1
|
Fu M, Liu L, Fu B, Hou M, Xiao Y, Liu Y, Sa D, Lu Q. Effects of salt stress on plant and rhizosphere bacterial communities, interaction patterns, and functions. FRONTIERS IN PLANT SCIENCE 2025; 15:1516336. [PMID: 39850220 PMCID: PMC11753915 DOI: 10.3389/fpls.2024.1516336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025]
Abstract
Introduction Salt stress significantly affects plant growth, and Na+ has gained attention for its potential to enhance plant adaptability to saline conditions. However, the interactions between Na+, plants, and rhizosphere bacterial communities remain unclear, hindering a deeper understanding of how Na+ contributes to plant resilience under salt stress. Methods This study aimed to investigate the mechanisms through which Na+ promotes alfalfa's adaptation to salt stress by modifying rhizosphere bacterial communities. We examined the metabolic activity and community composition of both plant and rhizosphere bacteria under Na+ treatment. Results and discussion Our results revealed significant changes in the metabolism and community composition of both plant and rhizosphere bacteria following Na+ addition. Na+ not only promoted the growth of rhizosphere bacteria but also induced shifts in the plant-associated bacterial community, increasing the abundance of bacterial species linked to alfalfa's resistance to salt stress. Furthermore, the chemical characteristics of alfalfa were strongly correlated with the composition and network complexity of both plant and rhizosphere bacterial communities. These interactions suggest that Na+ plays a crucial role in enhancing alfalfa's adaptability to salt stress by fostering beneficial bacterial communities in the rhizosphere. This finding highlights the potential of leveraging Na+ interactions with plant-microbe systems to improve crop resilience and productivity in saline agricultural environments.
Collapse
Affiliation(s)
- Maoxing Fu
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Liying Liu
- Inner Mongolia Autonomous Region Forestry Scientific Research Institute, Hohhot, China
| | - Bingzhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Meiling Hou
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Yanzi Xiao
- Agricultural College, Hulun Buir College, Hailar, China
| | - Yinghao Liu
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Duowen Sa
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Qiang Lu
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
Ning Y, Yang A, Liu L, Li Y, Chen Z, Ge P, Zhou D. Survival strategies of Eisenia fetida in antibiotic-contaminated soil based on screening canonical correlation analysis model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117367. [PMID: 39571259 DOI: 10.1016/j.ecoenv.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
Soil pollution from antibiotics has become increasingly severe, posing significant environmental and human health threats. Many soil organisms can survive and sustain their roles in maintaining soil ecosystems, even in polluted conditions. Exploring the life-sustaining mechanisms of these organisms in contaminated environments is scientifically significant. This study used Eisenia fetida as the test organism and antibiotics (oxytetracycline hydrochloride) as exogenous stress substances. Oxidative stress response experiments were conducted using the artificial soil method to examine the response of earthworms to oxidative stress. Additionally, 16S rRNA technology was employed to analyze the succession of microbial community structures inside and outside the earthworms. A screening canonical correlation analysis (SCCA) model was developed to investigate the relationship between microbial communities and earthworm oxidative stress system under oxytetracycline stress, revealing survival strategies in antibiotic-contaminated soil. The results showed that Proteobacteria and Bacteriodetes were the dominant phyla of microbial communities in earthworms under oxytetracycline stress, while Proteobacteria and Firmicutes were dominant bacterial phyla in soil. Bacteriodetes and Firmicutes in earthworms worked synergistically with catalase (CAT) and glutathione peroxidase (GPX) in oxidative stress responses. In soil, Actinobacteria, Verrucomicrobia, and Spirochaeta synergistically resisted oxytetracycline stress alongside peroxidase (POD) and glutathione S-transferase (GST). Earthworm mucus played a crucial role in this synergistic resistance. These findings provide a scientific and experimental basis for assessing the ecological safety risks of antibiotic-contaminated soil.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Aoqi Yang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Lu Liu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yuze Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhipeng Chen
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Peizhu Ge
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Meethangdee M, Pathom-aree W. Unraveling growth-promoting potential of plant beneficial actinobacteria on tropical bryophytes. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100284. [PMID: 39957781 PMCID: PMC11827090 DOI: 10.1016/j.crmicr.2024.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
Bryophytes are non-vascular plants with dominant gametophyte stage that play vital ecological roles in natural ecosystems. Unfortunately, their populations are currently in decline due to habitat destruction and various anthropogenic activities. The conservation efforts for bryophytes are hampered by their slow growth rates. This study aims to investigate the potential of actinobacteria to promote the growth of bryophytes. In this study, three plant growth-promoting actinobacteria, Dermacoccus abyssi MT1.1T, Micromonospora chalcea CMU55-4 and Streptomyces thermocarboxydus S3 were cultured in International Streptomyces Project medium 2 (ISP2) broth to obtain culture filtrates containing bioactive compounds for enhancing the growth of two bryophyte species, Physcomotrium sphaericum (C. Ludw.) Fürnr and Sphagnum cuspidatulum C. Müll. Interestingly, the incorporation of actinobacterial culture filtrates into 1/16 Murashige and Skoog (MS) medium yielded superior growth performance of P. sphaericum (C. Ludw.) Fürnr and S. cuspidatulum C. Müll, as observed from the thallus height, fresh weight, total chlorophyll contents, and total carotenoid contents compared to control groups. In addition, the inoculation of M. chalcea CMU55-4 on S. cuspidatulum C. Müll grown in sterile peat moss demonstrated the highest values for thallus height, fresh weight, dry weight, total chlorophyll content, and total carotenoid content. All actinobacteria successfully colonized the moss seedlings without any observable negative impacts, indicating beneficial interactions between actinobacteria and bryophytes. This research sheds light on the potential of harnessing plant beneficial actinobacteria to enhance the growth of bryophytes for conservation purposes.
Collapse
Affiliation(s)
- Mathurin Meethangdee
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-aree
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Pathom-Aree W, Sattayawat P, Inwongwan S, Cheirsilp B, Liewtrakula N, Maneechote W, Rangseekaew P, Ahmad F, Mehmood MA, Gao F, Srinuanpan S. Microalgae growth-promoting bacteria for cultivation strategies: Recent updates and progress. Microbiol Res 2024; 286:127813. [PMID: 38917638 DOI: 10.1016/j.micres.2024.127813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Microalgae growth-promoting bacteria (MGPB), both actinobacteria and non-actinobacteria, have received considerable attention recently because of their potential to develop microalgae-bacteria co-culture strategies for improved efficiency and sustainability of the water-energy-environment nexus. Owing to their diverse metabolic pathways and ability to adapt to diverse conditions, microalgal-MGPB co-cultures could be promising biological systems under uncertain environmental and nutrient conditions. This review proposes the recent updates and progress on MGPB for microalgae cultivation through co-culture strategies. Firstly, potential MGPB strains for microalgae cultivation are introduced. Following, microalgal-MGPB interaction mechanisms and applications of their co-cultures for biomass production and wastewater treatment are reviewed. Moreover, state-of-the-art studies on synthetic biology and metabolic network analysis, along with the challenges and prospects of opting these approaches for microalgal-MGPB co-cultures are presented. It is anticipated that these strategies may significantly improve the sustainability of microalgal-MGPB co-cultures for wastewater treatment, biomass valorization, and bioproducts synthesis in a circular bioeconomy paradigm.
Collapse
Affiliation(s)
- Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Naruepon Liewtrakula
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wageeporn Maneechote
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pharada Rangseekaew
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Fengzheng Gao
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Zurich 8092, Switzerland; Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
5
|
Xie F, Andrews B, Asenjo JA, Goodfellow M, Pathom-Aree W. Atacama desert actinomycetes: taxonomic analysis, drought tolerance and plant growth promoting potential. World J Microbiol Biotechnol 2024; 40:283. [PMID: 39060806 DOI: 10.1007/s11274-024-04077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
This study was designed to recover representative culturable actinomycetes from the Atacama Desert, and to detect their ability to promote plant growth under drought conditions. Environmental samples were taken from three Atacama Desert habitats, namely, from the Aguas Calientes, Lomas Bayas and Yungay core regions. With one exception higher actinomycete counts were obtained when isolation media were inoculated with mineral particles than with corresponding aliquots of serial dilution. Comparative 16S rRNA gene sequencing showed that representative isolates belonged to thirteen genera including putative novel Blastococcus, Kocuria, Micromonospora, Pseudonocardia, Rhodococcus and Streptomyces species. Representative isolates produced indole-3-acetic acid, siderophore and solubilized phosphate as well as displaying an ability to grow under drought conditions. In conclusion, the current findings open up exciting prospects for the promising potential of actinomycetes from the Atacama Desert to be used as bioinoculants to promote plant growth in arid and semi-arid biomes.
Collapse
Affiliation(s)
- Feiyang Xie
- Doctor of Philosophy Program in Applied Microbiology (International Program) in Faculty of Science, Chiang Mai University, under the CMU Presidential Scholarship, Chiang Mai, Thailand
| | - Barbara Andrews
- Department of Chemical Engineering, Biotechnology and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beaucheff 851, Santiago, Chile
| | - Juan A Asenjo
- Department of Chemical Engineering, Biotechnology and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beaucheff 851, Santiago, Chile
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Wasu Pathom-Aree
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
6
|
Chinachanta K, Chaiwan F, Luu DT, Pathom-aree W. Draft genome sequence data of Micrococcus yunnanesis strain ORF15-23 from rice rhizosphere soil in Thailand. Data Brief 2024; 54:110466. [PMID: 38774239 PMCID: PMC11106824 DOI: 10.1016/j.dib.2024.110466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
A Gram-positive bacterium designated as strain ORF15-23 was isolated from a soil sample collected from rainfed organic paddy fields in Roi Et province, Thailand. This strain is previously reported to produce indole-3-acetic acid and 2-acetyl-1-pyrroline (2AP) compound, solubilize potassium feldspar and promote growth of rice seedlings. The genome sequencing was carried out using Illumina MiSeq platform. The draft genome of strain ORF15-23 was 2,562,005 bp in length with 1677 protein coding sequences and an average G + C content of 72.97 mol.%. Phylogenomic tree supports the assignment of strain ORF15-23 as member of the genus Micrococcus. A comparison of average nucleotide identity (ANIb) values revealed that strain ORF15-23 shared 96.95 % identity with the genome of M. yunnanensis DSM 21948T. The draft genome sequence of M. yunnanesis ORF15-23 has been deposited in the DDBJ/EMBL/GenBank databases under the accession number JAZDRZ000000000. This genome sequence data provides insightful information for the taxonomic characterization and further biotechnological exploitation of M. yunnanesis ORF15-23.
Collapse
Affiliation(s)
- Kawiporn Chinachanta
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Fapailin Chaiwan
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Doan Trung Luu
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Wasu Pathom-aree
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Gonçalves AC, Falcão A, Alves G, Silva LR, Flores-Félix JD. Diversity of Culture Microorganisms from Portuguese Sweet Cherries. Life (Basel) 2023; 13:2323. [PMID: 38137924 PMCID: PMC10744636 DOI: 10.3390/life13122323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Consumers today seek safe functional foods with proven health-promoting properties. Current evidence shows that a healthy diet can effectively alleviate oxidative stress levels and reduce inflammatory markers, thereby preventing the occurrence of many types of cancer, hypertension, and cardiovascular and neurological pathologies. Nevertheless, as fruits and vegetables are mainly consumed fresh, they can serve as vectors for the transmission of pathogenic microorganisms associated with various disease outbreaks. As a result, there has been a surge in interest in the microbiome of fruits and vegetables. Therefore, given the growing interest in sweet cherries, and since their microbial communities have been largely ignored, the primary purpose of this study is to investigate their culturome at various maturity stages for the first time. A total of 55 microorganisms were isolated from sweet cherry fruit, comprising 23 bacteria and 32 fungi species. Subsequently, the selected isolates were molecularly identified by amplifying the 16S rRNA gene and ITS region. Furthermore, it was observed that the communities became more diverse as the fruit matured. The most abundant taxa included Pseudomonas and Ralstonia among the bacteria, and Metschnikowia, Aureobasidium, and Hanseniaspora among the fungi.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (G.A.); (L.R.S.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (G.A.); (L.R.S.)
| | - Luís R. Silva
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (G.A.); (L.R.S.)
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Pólo II—Pinhal de Marrocos, University of Coimbra, 3030-790 Coimbra, Portugal
| | - José D. Flores-Félix
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (G.A.); (L.R.S.)
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
8
|
Kitwetch B, Rangseekaew P, Chromkaew Y, Pathom-Aree W, Srinuanpan S. Employing a Plant Probiotic Actinomycete for Growth Promotion of Lettuce ( Lactuca sativa L. var. longifolia) Cultivated in a Hydroponic System under Nutrient Limitation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3793. [PMID: 38005691 PMCID: PMC10675278 DOI: 10.3390/plants12223793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/28/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
The consumption of lettuce is associated with an increased risk of ingesting nitrate, a naturally occurring and potentially harmful compound that can have adverse effects on human health. Hydroponic cultivation systems serve as effective tools for regulating nutrient solutions and nitrogen availability, which are essential for controlling nitrate levels. However, the techniques for reducing nutrient levels need to be appropriately calibrated based on lettuce growth responses and their interactions with the environment and growing conditions. Previous studies have demonstrated that plant probiotic actinomycetes can alleviate nutritional stress in various crops. However, there is a noticeable gap in research concerning the effects of actinomycetes on hydroponically grown lettuce, particularly under nutrient-limiting conditions. This study aimed to evaluate the effectiveness of the actinomycete Streptomyces thermocarboxydus S3 in enhancing lettuce growth in a nutrient-restricted hydroponic system. The results indicated that the detrimental effects of nutrient stress on lettuce were mitigated by the inoculation of lettuce with S. thermocarboxydus S3. This mitigation was evident in various growth parameters, including leaf count, shoot length, and the fresh and dry weights of both shoots and roots. In the presence of nutritional stress, S. thermocarboxydus S3 likely mitigated the negative effects on lettuce by reducing hydrogen peroxide levels, presumably through the synthesis of H2O2-scavenging enzymes. Furthermore, S. thermocarboxydus S3 successfully survived and colonized lettuce roots. Therefore, the inoculation of lettuce with S. thermocarboxydus S3 offers significant advantages for promoting lettuce growth in nutrient-limited hydroponic systems.
Collapse
Affiliation(s)
- Benyapa Kitwetch
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pharada Rangseekaew
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yupa Chromkaew
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Shi L, Zhu X, Qian T, Du J, Du Y, Ye J. Mechanism of Salt Tolerance and Plant Growth Promotion in Priestia megaterium ZS-3 Revealed by Cellular Metabolism and Whole-Genome Studies. Int J Mol Sci 2023; 24:15751. [PMID: 37958734 PMCID: PMC10647267 DOI: 10.3390/ijms242115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Approximately one-third of agricultural land worldwide is affected by salinity, which limits the productivity and sustainability of crop ecosystems. Plant-growth-promoting rhizobacteria (PGPR) are a potential solution to this problem, as PGPR increases crop yield through improving soil fertility and stress resistance. Previous studies have shown that Priestia megaterium ZS-3(ZS-3) can effectively help plants tolerate salinity stress. However, how ZS-3 regulates its metabolic adaptations in saline environments remains unclear. In this study, we monitored the metabolic rearrangement of compatibilisers in ZS-3 and combined the findings with genomic data to reveal how ZS-3 survives in stressful environments, induces plant growth, and tolerates stress. The results showed that ZS-3 tolerated salinity levels up to 9%. In addition, glutamate and trehalose help ZS-3 adapt to osmotic stress under low NaCl stress, whereas proline, K+, and extracellular polysaccharides regulate the osmotic responses of ZS-3 exposed to high salt stress. Potting experiments showed that applying the ZS-3 strain in saline and neutral soils could effectively increase the activities of soil acid phosphatase, urease, and invertase in both soils, thus improving soil fertility and promoting plant growth. In addition, strain ZS-3-GFP colonised the rhizosphere and leaves of Cinnamomum camphora well, as confirmed by confocal microscopy and resistance plate count analysis. Genomic studies and in vitro experiments have shown that ZS-3 exhibits a variety of beneficial traits, including plant-promoting, antagonistic, and other related traits (such as resistance to saline and heavy metal stress/tolerance, amino acid synthesis and transport, volatile compound synthesis, micronutrient utilisation, and phytohormone biosynthesis/regulatory potential). The results support that ZS-3 can induce plant tolerance to abiotic stresses. These data provide important clues to further reveal the interactions between plants and microbiomes, as well as the mechanisms by which micro-organisms control plant health.
Collapse
Affiliation(s)
- Lina Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoxia Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Qian
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Jiazhou Du
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanyuan Du
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Chinachanta K, Shutsrirung A, Santasup C, Pathom-Aree W, Luu DT, Herrmann L, Lesueur D, Prom-u-thai C. Rhizoactinobacteria Enhance Growth and Antioxidant Activity in Thai Jasmine Rice ( Oryza sativa) KDML105 Seedlings under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3441. [PMID: 37836181 PMCID: PMC10574518 DOI: 10.3390/plants12193441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Salinity is one of the most devastating abiotic stresses hampering the growth and production of rice. Nine indole-3-acetic acid (IAA)-producing salt-tolerant plant-growth-promoting rhizobacteria (ST-PGPR) were inoculated into Thai jasmine rice (Oryza sativa L.) variety Khao Dawk Mali 105 (KDML105) seedlings grown under different concentrations of NaCl (0, 50, 100, and 150 mM). The ST-PGPR strains significantly promoted the growth parameters, chlorophyll content, nutrient uptake (N, P, K, Ca, and Mg), antioxidant activity, and proline accumulation in the seedlings under both normal and saline conditions compared to the respective controls. The K+/Na+ ratio of the inoculated seedlings was much higher than that of the controls, indicating greater salt tolerance. The most salt-tolerant and IAA-producing strain, Sinomonas sp. ORF15-23, yielded the highest values for all the parameters, particularly at 50 mM NaCl. The percentage increases in these parameters relative to the controls ranged from >90% to 306%. Therefore, Sinomonas sp. ORF15-23 was considered a promising ST-PGPR to be developed as a bioinoculant for enhancing the growth, salt tolerance, and aroma of KDML105 rice in salt-affected areas. Environmentally friendly technologies such as ST-PGPR bioinoculants could also support the sustainability of KDML105 geographical indication (GI) products. However, the efficiency of Sinomonas sp. ORF15-23 should be evaluated under field conditions for its effect on rice nutrient uptake and growth, including the 2AP level.
Collapse
Affiliation(s)
- Kawiporn Chinachanta
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Arawan Shutsrirung
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
| | - Choochad Santasup
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
| | - Wasu Pathom-Aree
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Doan Trung Luu
- IPSiM, CNRS, INRAE, Institute Agro, University of Montpellier, 34060 Montpellier, France;
| | - Laetitia Herrmann
- Alliance of Bioversity International and Centre International of Tropical Agriculture (CIAT), Asia Hub, Common Microbial Biotechnology Platform (CMBP), Hanoi 10000, Vietnam; (L.H.); (D.L.)
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, VIC 3125, Australia
| | - Didier Lesueur
- Alliance of Bioversity International and Centre International of Tropical Agriculture (CIAT), Asia Hub, Common Microbial Biotechnology Platform (CMBP), Hanoi 10000, Vietnam; (L.H.); (D.L.)
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, VIC 3125, Australia
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR Eco&Sols, Hanoi 10000, Vietnam
- Eco & Sols, CIRAD, INRAE, Institut de Recherche pour le Développement (IRD), Montpellier SupAgro, Université de Montpellier (UMR), 34060 Montpellier, France
- Chinese Academy of Tropical Agricultural Sciences, Rubber Research Institute, Haikou 571101, China
| | - Chanakan Prom-u-thai
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
11
|
Loudari A, Latique S, Mayane A, Colinet G, Oukarroum A. Polyphosphate fertilizer impacts the enzymatic and non-enzymatic antioxidant capacity of wheat plants grown under salinity. Sci Rep 2023; 13:11212. [PMID: 37433920 DOI: 10.1038/s41598-023-38403-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023] Open
Abstract
By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity.
Collapse
Affiliation(s)
- Aicha Loudari
- Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, Lot-660 Hay Moulay, Rachid, 43150, Ben Guerir, Morocco.
- Terra Research Center, Liege University-Gembloux Agro Bio Tech Faculty, 5030, Gembloux, Belgium.
| | - Salma Latique
- Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, Lot-660 Hay Moulay, Rachid, 43150, Ben Guerir, Morocco
| | - Asmae Mayane
- Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, Lot-660 Hay Moulay, Rachid, 43150, Ben Guerir, Morocco
| | - Gilles Colinet
- Terra Research Center, Liege University-Gembloux Agro Bio Tech Faculty, 5030, Gembloux, Belgium
| | - Abdallah Oukarroum
- Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, Lot-660 Hay Moulay, Rachid, 43150, Ben Guerir, Morocco.
- High Throughput Multidisciplinary Research Laboratory, Mohammed VI Polytechnic University (UM6P), 43150, Ben Guerir, Morocco.
| |
Collapse
|
12
|
Li X, Lang D, Wang J, Zhang W, Zhang X. Plant-beneficial Streptomyces dioscori SF1 potential biocontrol and plant growth promotion in saline soil within the arid and semi-arid areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27362-x. [PMID: 37145360 DOI: 10.1007/s11356-023-27362-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Environmental challenges like salinity, drought, fungal phytopathogens, and pesticides directly or/and indirectly influence the environment and agricultural yields. Certain beneficial endophytic Streptomyces sp. can ameliorate environmental stresses and be utilized as crop growth promoters under adverse conditions. Herein, Streptomyces dioscori SF1 (SF1) isolated from seeds of Glycyrrhiza uralensis tolerated fungal phytopathogens and abiotic stresses (drought, salt, and acid base). Strain SF1 showed multifarious plant growth promotion characteristics, including the production of indole acetic acid (IAA), ammonia, siderophores, ACC deaminase, extracellular enzymes, the ability of potassium solubilization, and nitrogen fixation. The dual plate assay showed that strain SF1 inhibited 63.21 ± 1.53%, 64.84 ± 1.35%, and 74.19 ± 2.88% of Rhizoctonia solani, Fusarium acuminatum, and Sclerotinia sclerotiorum, respectively. The detached root assays showed that strain SF1 significantly reduced the number of rotten sliced roots, and the biological control effect on sliced roots of Angelica sinensis, Astragalus membranaceus, and Codonopsis pilosula was 93.33%, 86.67%, and 73.33%, respectively. Furthermore, the strain SF1 significantly increased the growth parameters and biochemical indicators of adversity in G. uralensis seedlings under drought and/or salt conditions, including radicle length and diameter, hypocotyl length and diameter, dry weight, seedling vigor index, antioxidant enzyme activity, and non-enzymatic antioxidant content. In conclusion, the strain SF1 can be used to develop environmental protection biological control agents, improve the anti-disease activity of plants, and promote plant growth in salinity soil within arid and semi-arid regions.
Collapse
Affiliation(s)
- Xiaokang Li
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Duoyong Lang
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianhuan Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Wenjin Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Engineering and Technology Research Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, 750004, China.
| |
Collapse
|
13
|
Gao T, Wang X, Qin Y, Ren Z, Zhao X. Watermelon Root Exudates Enhance Root Colonization of Bacillus amyloliquefaciens TR2. Curr Microbiol 2023; 80:110. [PMID: 36802037 DOI: 10.1007/s00284-023-03206-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/30/2023] [Indexed: 02/21/2023]
Abstract
Bacillus amyloliquefaciens TR2, one of plant growth-promoting rhizobacteria (PGPR), is capable of colonizing plant roots in a large population size. However, the interaction of watermelon root exudates and colonization of the strain TR2 has not yet been clearly elucidated. In this investigation, we demonstrated that B. amyloliquefaciens TR2 promoted watermelon plants growth and exhibited biocontrol efficacy against watermelon Fusarium wilt under greenhouse conditions. Collected watermelon root exudates significantly induced chemotaxis, swarming motility, and biofilm formation of the strain TR2. We also tested the components of root exudates (organic acids: malic acid, citric acid, succinic acid, and fumaric acid; amino acids: methionine, glutamic acid, alanine, and aspartic acid; phenolic acid: benzoic acid) and the results showed that a majority of these compounds could promote chemotactic response, swarming motility, and biofilm formation in a different degree. Benzoic acid induced the strongest chemotactic response; however, the swarming motility and biofilm formation of the strain TR2 were maximumly enhanced by supplement of fumaric acid and glutamic acid, respectively. In addition, the root colonization examination indicated that the population of B. amyloliquefaciens TR2 colonized on watermelon root surfaces was dramatically increased by adding concentrated watermelon root exudates. In summary, our studies provide evidence suggesting that root exudates are important for colonization of B. amyloliquefaciens TR2 on plant roots and help us to understand the interaction between plants and beneficial bacteria.
Collapse
Affiliation(s)
- Tantan Gao
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, No.7 Beinong Road, Huilongguan District, Beijing, 102206, China
| | - Xudong Wang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, No.7 Beinong Road, Huilongguan District, Beijing, 102206, China
| | - Yanqiu Qin
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, No.7 Beinong Road, Huilongguan District, Beijing, 102206, China
| | - Zhengguang Ren
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, No.7 Beinong Road, Huilongguan District, Beijing, 102206, China
| | - Xiaoyan Zhao
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, No.7 Beinong Road, Huilongguan District, Beijing, 102206, China.
| |
Collapse
|
14
|
Marghoob MU, Rodriguez-Sanchez A, Imran A, Mubeen F, Hoagland L. Diversity and functional traits of indigenous soil microbial flora associated with salinity and heavy metal concentrations in agricultural fields within the Indus Basin region, Pakistan. Front Microbiol 2022; 13:1020175. [PMID: 36419426 PMCID: PMC9676371 DOI: 10.3389/fmicb.2022.1020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Soil salinization and heavy metal (HM) contamination are major challenges facing agricultural systems worldwide. Determining how soil microbial communities respond to these stress factors and identifying individual phylotypes with potential to tolerate these conditions while promoting plant growth could help prevent negative impacts on crop productivity. This study used amplicon sequencing and several bioinformatic programs to characterize differences in the composition and potential functional capabilities of soil bacterial, fungal, and archaeal communities in five agricultural fields that varied in salinity and HM concentrations within the Indus basin region of Pakistan. The composition of bacteria with the potential to fix atmospheric nitrogen (N) and produce the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase were also determined. Microbial communities were dominated by: Euryarchaeota (archaea), Actinobacteria, Proteobacteria, Planctomycetota, Firimicutes, Patescibacteria and Acidobacteria (bacteria), and Ascomycota (fungi), and all soils contained phylotypes capable of N-fixation and ACC-deaminase production. Salinity influenced bacterial, but not archaeal or fungal communities. Both salinity and HM altered the relative abundance of many phylotypes that could potentially promote or harm plant growth. These stress factors also appeared to influence the potential functional capabilities of the microbial communities, especially in their capacity to cycle phosphorous, produce siderophores, and act as symbiotrophs or pathotrophs. Results of this study confirm that farms in this region are at risk due to salinization and excessive levels of some toxic heavy metals, which could negatively impact crop and human health. Changes in soil microbial communities and their potential functional capabilities are also likely to affect several critical agroecosystem services related to nutrient cycling, pathogen suppression, and plant stress tolerance. Many potentially beneficial phylotypes were identified that appear to be salt and HM tolerant and could possibly be exploited to promote these services within this agroecosystem. Future efforts to isolate these phylotypes and determine whether they can indeed promote plant growth and/or carry out other important soil processes are recommended. At the same time, identifying ways to promote the abundance of these unique phylotypes either through modifying soil and crop management practices, or developing and applying them as inoculants, would be helpful for improving crop productivity in this region.
Collapse
Affiliation(s)
- Muhammad Usama Marghoob
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | | | - Asma Imran
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Fathia Mubeen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Lori Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
15
|
Narsing Rao MP, Lohmaneeratana K, Bunyoo C, Thamchaipenet A. Actinobacteria-Plant Interactions in Alleviating Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212976. [PMID: 36365429 PMCID: PMC9658302 DOI: 10.3390/plants11212976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 05/20/2023]
Abstract
Abiotic stressors, such as drought, flooding, extreme temperature, soil salinity, and metal toxicity, are the most important factors limiting crop productivity. Plants use their innate biological systems to overcome these abiotic stresses caused by environmental and edaphic conditions. Microorganisms that live in and around plant systems have incredible metabolic abilities in mitigating abiotic stress. Recent advances in multi-omics methods, such as metagenomics, genomics, transcriptomics, and proteomics, have helped to understand how plants interact with microbes and their environment. These methods aid in the construction of various metabolic models of microbes and plants, resulting in a better knowledge of all metabolic exchanges engaged during interactions. Actinobacteria are ubiquitous and are excellent candidates for plant growth promotion because of their prevalence in soil, the rhizosphere, their capacity to colonize plant roots and surfaces, and their ability to produce various secondary metabolites. Mechanisms by which actinobacteria overcome abiotic stress include the production of osmolytes, plant hormones, and enzymes, maintaining osmotic balance, and enhancing nutrient availability. With these characteristics, actinobacteria members are the most promising candidates as microbial inoculants. This review focuses on actinobacterial diversity in various plant regions as well as the impact of abiotic stress on plant-associated actinobacterial diversity and actinobacteria-mediated stress mitigation processes. The study discusses the role of multi-omics techniques in expanding plant-actinobacteria interactions, which aid plants in overcoming abiotic stresses and aims to encourage further investigations into what may be considered a relatively unexplored area of research.
Collapse
Affiliation(s)
- Manik Prabhu Narsing Rao
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Karan Lohmaneeratana
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Chakrit Bunyoo
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Correspondence:
| |
Collapse
|