1
|
Gao Y, Tian T, Liu X, Zhang Y, Hai P, Zhang W, Zhai Y, Wang C, Wu JL, Wen J, Zhou T. Spatial metabolomics and feature-based molecular networking to unveiling in-situ quality markers landscape and reflecting geographic origins of pomegranate seeds. Food Chem 2025; 471:142761. [PMID: 39788015 DOI: 10.1016/j.foodchem.2025.142761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Pomegranate seeds, a by-product of pomegranate processing, are gaining attention in food industries due to their high antioxidant activity. However, the lack of quality markers reflecting activity and spatial characteristics limits their utilization and product stability. In this research, a selective and sensitive method integrating ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry with feature-based molecular networking, and desorption electrospray ionization-mass spectrometry imaging developed to identify components and locate in-situ images of quality markers via spatial metabolomics analysis. Additionally, molecular docking analyses and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assays validated the antioxidant quality markers and elucidated correlations between these markers, regions, and activity. A total of 227 components were identified, and six were selected as quality markers for pomegranate seeds, reflecting their antioxidant activity and spatial characteristics. Consequently, this research provides an efficient method for screening food quality markers based on activity and spatial characteristics, providing insights into food quality evaluation.
Collapse
Affiliation(s)
- Yuye Gao
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tian Tian
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xiaojing Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Ping Hai
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining, China
| | - Wei Zhang
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining, China
| | - Yujia Zhai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China.
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao.
| | - Jun Wen
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
2
|
Silva MA, Albuquerque TG, Ferreira DM, Alves RC, Oliveira MBPP, Costa HS. Nutritional and Bioactive Profiling of Cucumis melo L. By-Products: Towards a Circular Food Economy. Molecules 2025; 30:1287. [PMID: 40142061 PMCID: PMC11944493 DOI: 10.3390/molecules30061287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Food waste, due to the high quantities produced, becomes a significant environmental, economic, and social challenge worldwide. Simultaneously, the rising prevalence of chronic diseases has intensified the demand for healthier food options. A promising approach to address these issues involves the valorisation of food by-products for the development of innovative and healthier food products. Cucumis melo L., commonly consumed as a fruit, generates peels and seeds that are typically discarded. In the present study, the nutritional composition and antioxidant potential of pulp, peel, and seeds of C. melo L. (yellow and green melon) were comprehensively evaluated. The seeds were identified as a rich source of dietary fibre (39.0 and 39.7 g/100 g dw; p > 0.05) and protein (21.0 and 21.3 g/100 g dw; p > 0.05), exhibiting an appealing fatty acid profile. The peel contains high levels of dietary fibre (39.7 and 47.1 g/100 g dw; p > 0.05) and total phenolic compounds (1976 and 2212 mg GAE/100 g dw; p > 0.05), suggesting significant bioactive potential. The peels showed a high antioxidant capacity for both methods used, DPPH• (120 and 144 mg TE/100 g dw; p > 0.05) and FRAP (6146 and 7408 mg TE/100 g dw; p > 0.05) assays. Potassium emerged as the predominant mineral in the seeds (799 and 805 mg/100 dw; p > 0.05), while glutamic acid was the most abundant amino acid (4161 and 4327 mg/100 g dw; p > 0.05). These findings emphasise the antioxidant and nutritional properties of C. melo L. by-products, highlighting their potential for inclusion in novel food formulations. This study not only advances the understanding of C. melo L. properties but also supports the reduction of food waste and promotes sustainability within the food supply chain.
Collapse
Affiliation(s)
- Mafalda Alexandra Silva
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.A.S.); (H.S.C.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.M.F.); (R.C.A.); (M.B.P.P.O.)
| | - Tânia Gonçalves Albuquerque
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.A.S.); (H.S.C.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.M.F.); (R.C.A.); (M.B.P.P.O.)
| | - Diana Melo Ferreira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.M.F.); (R.C.A.); (M.B.P.P.O.)
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.M.F.); (R.C.A.); (M.B.P.P.O.)
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.M.F.); (R.C.A.); (M.B.P.P.O.)
| | - Helena S. Costa
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.A.S.); (H.S.C.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.M.F.); (R.C.A.); (M.B.P.P.O.)
| |
Collapse
|
3
|
Breschi C, D'Agostino S, Meneguzzo F, Zabini F, Chini J, Lovatti L, Tagliavento L, Guerrini L, Bellumori M, Cecchi L, Zanoni B. Can a Fraction of Flour and Sugar Be Replaced with Fruit By-Product Extracts in a Gluten-Free and Vegan Cookie Recipe? Molecules 2024; 29:1102. [PMID: 38474613 DOI: 10.3390/molecules29051102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Certain food by-products, including not-good-for-sale apples and pomegranate peels, are rich in bioactive molecules that can be collected and reused in food formulations. Their extracts, rich in pectin and antioxidant compounds, were obtained using hydrodynamic cavitation (HC), a green, efficient, and scalable extraction technique. The extracts were chemically and physically characterized and used in gluten-free and vegan cookie formulations to replace part of the flour and sugar to study whether they can mimic the role of these ingredients. The amount of flour + sugar removed and replaced with extracts was 5% and 10% of the total. Physical (dimensions, color, hardness, moisture content, water activity), chemical (total phenolic content, DPPH radical-scavenging activity), and sensory characteristics of cookie samples were studied. Cookies supplemented with the apple extract were endowed with similar or better characteristics compared to control cookies: high spread ratio, similar color, and similar sensory characteristics. In contrast, the pomegranate peel extract enriched the cookies in antioxidant molecules but significantly changed their physical and sensory characteristics: high hardness value, different color, and a bitter and astringent taste. HC emerged as a feasible technique to enable the biofortification of consumer products at a real scale with extracts from agri-food by-products.
Collapse
Affiliation(s)
- Carlotta Breschi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50121 Florence, Italy
- Institute of Bioeconomy, National Research Council, 50019 Florence, Italy
| | - Silvia D'Agostino
- Department of Agriculture, Food, Environment and Forestry Sciences and Technologies (DAGRI), University of Florence, 50121 Florence, Italy
| | | | - Federica Zabini
- Institute of Bioeconomy, National Research Council, 50019 Florence, Italy
| | - Jasmine Chini
- R&D Department, Consorzio Melinda Sca, Via Trento 200, 38023 Cles, Italy
| | - Luca Lovatti
- R&D Department, Consorzio Melinda Sca, Via Trento 200, 38023 Cles, Italy
| | | | - Lorenzo Guerrini
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, 35122 Padua, Italy
| | - Maria Bellumori
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50121 Florence, Italy
| | - Lorenzo Cecchi
- Department of Agriculture, Food, Environment and Forestry Sciences and Technologies (DAGRI), University of Florence, 50121 Florence, Italy
| | - Bruno Zanoni
- Department of Agriculture, Food, Environment and Forestry Sciences and Technologies (DAGRI), University of Florence, 50121 Florence, Italy
| |
Collapse
|
4
|
Haș IM, Vodnar DC, Bungau AF, Tarce AG, Tit DM, Teleky BE. Enhanced Elderberry Snack Bars: A Sensory, Nutritional, and Rheological Evaluation. Foods 2023; 12:3544. [PMID: 37835197 PMCID: PMC10572914 DOI: 10.3390/foods12193544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Interest in functional foods is continuously increasing, having the potential to be an ally in reducing cardiometabolic risk factors. This study focuses on developing and evaluating oat- and millet-based snack bars enriched with freeze-dried elderberry powder (FDEBP), aiming to combine great taste with enhanced nutritional value, antioxidant properties, and prebiotic potential. The research encompassed a sensory evaluation, nutritional assessment, and rheological analysis of the snack bars. A hedonic test was conducted to gauge consumer preferences and overall liking, providing insights into taste, texture, and acceptance. Sensory evaluation revealed positive feedback from participants, and acceptance rating scores ranged from 7 to 8.04, the best score recorded by one of the enhanced bars with 1% FDEBP. The rheological analysis determined the bars' dynamic storage modulus (G') and loss modulus (G″), assessing the material's elasticity and mechanical properties. Results showed that the incorporation of 0.5% and 1% FDEBP in the oat and millet snack bars significantly impacted their rheological properties, enhancing structural strength. Nutritional analysis demonstrated that the snack bars provided a complete mix of macronutrients required in a daily diet. The study sheds light on the potential of functional snack bars enriched with FDEBP, offering a delectable way to access essential nutrients and bioactive compounds in a minimally processed form, without the addition of sweeteners or additives, friendly to the gut microbiota.
Collapse
Affiliation(s)
- Ioana Mariana Haș
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (A.F.B.)
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (A.F.B.)
| | - Alexandra Georgiana Tarce
- Medicine Program of Study, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
5
|
García P, Bustamante A, Echeverría F, Encina C, Palma M, Sanhueza L, Sambra V, Pando ME, Jiménez P. A Feasible Approach to Developing Fiber-Enriched Bread Using Pomegranate Peel Powder: Assessing Its Nutritional Composition and Glycemic Index. Foods 2023; 12:2798. [PMID: 37509890 PMCID: PMC10379044 DOI: 10.3390/foods12142798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The consumption of dietary fiber (DF) has been associated with a reduced incidence of non-communicable diseases. Despite various strategies implemented worldwide to increase DF intake, it remains low. Therefore, the development of new fiber-rich food products that are widely consumed could be a strategy to improve DF intake. In this study, an agro-industrial by-product, pomegranate peel powder (PPP), was used as an innovative source of DF and antioxidant. The objective was to develop a bread enriched with DF, antioxidants, and sensory characteristics by partially replacing wheat flour (WF) with PPP at levels of 0%, 2.5%, 5%, 7.5%, and 10%. Bread with 2.5% and 5% PPP was chosen for a clinical trial to evaluate glycemic response (GR) in healthy subjects and determine the bread's glycemic index (GI). As the percentage of PPP increased, both the DF and total polyphenol content increased significantly. The highest overall acceptability was achieved with bread containing up to 5% PPP. Consumption of bread with 2.5% and 5.0% PPP significantly reduced the GI compared to the control bread, while the decrease in GR was not significant. PPP could be a potential food and low-cost ingredient to improve the bread's nutritional quality through its contribution to DF and antioxidants.
Collapse
Affiliation(s)
- Paula García
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Andrés Bustamante
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Francisca Echeverría
- Carrera de Nutrición y Dietética, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Cristian Encina
- Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Manuel Palma
- P&M Foods, Los Olmos 3465, Santiago 7810668, Chile
| | - Leyla Sanhueza
- Departamento Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Verónica Sambra
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Maria Elsa Pando
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Paula Jiménez
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
6
|
Limongelli R, Minervini F, Calasso M. Fermentation of pomegranate matrices with Hanseniaspora valbyensis to produce a novel food ingredient. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Precup G, Teleky BE, Ranga F, Vodnar DC. Assessment of Physicochemical and Rheological Properties of Xylo-Oligosaccharides and Glucose-Enriched Doughs Fermented with BB-12. BIOLOGY 2022; 11:biology11040553. [PMID: 35453752 PMCID: PMC9027653 DOI: 10.3390/biology11040553] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Xylo-oligosaccharides (XOS) are considered indigestible fibers that could support the growth of potentially beneficial gut microbes, thus classified as “prebiotics”. Prebiotics are “a substrate that is selectively utilized by host microorganisms conferring a health benefit” as defined by the International Scientific Association for Probiotics and Prebiotics. The current work aimed to study the effect of XOS and glucose addition on wheat flour sourdough fermented with Bifidobacterium animalis subsp. lactis (BB-12) strain in terms of organic acid production and on the rheological properties of the doughs. The effect of XOS addition increased the production of organic acids, and positively influenced the rheological properties of the dough. Additionally, after frozen storage, there were no significant viscoelastic changes in the dough structure, which indicates that xylo-oligosaccharides improved the water retention capability of the dough. Through fermentation carbohydrates like, glucose, xylose, maltose, and XOS were consumed, and a high quantity of lactic and acetic acid were produced, organic acids with roles in the flavor generation and sensorial properties of the final product. This study showed the potential use of XOS as food ingredient in sourdoughs for bakery products manufacturing with improved quality and rheological properties. Abstract Xylo-oligosaccharides (XOS) are considered non-digestible fibers produced mainly from agricultural biomass and are classified as “emerging prebiotic” compounds. Since XOS were shown to promote the growth of bifidobacteria in the gut with potential effects on one’s health, scientists used them as food ingredients. For example, the addition of XOS in bakery products could improve their physicochemical characteristics. The current work aimed to investigate the effect of XOS and glucose addition on wheat flour sourdough fermented with Bifidobacterium animalis subsp. lactis (BB-12) strain in terms of organic acid production. The effect on viscoelastic changes during frozen storage and after the thawing process was also studied. The results showed that the viability of BB-12 increased slightly with the increase in XOS and glucose concentrations, which determined dough acidification due to accumulation of organic acids, that positively influenced the dough’s rheological properties such as a higher elasticity before and after frozen storage. With 10% XOS-addition, the acetic acid quantity reached 0.87 ± 0.03 mg/L, and the highest lactic acid concentration was found in the 10% XOS-enriched doughs, the glucose-enriched doughs and in the control sample (100% wheat dough). The quantity of glucose, maltose, XOS, and xylose decreased until the end of fermentation.
Collapse
Affiliation(s)
- Gabriela Precup
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania; (G.P.); (F.R.)
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence: (B.-E.T.); (D.C.V.)
| | - Floricuța Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania; (G.P.); (F.R.)
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania; (G.P.); (F.R.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence: (B.-E.T.); (D.C.V.)
| |
Collapse
|