1
|
Vanegas MJ, Gómez S, Cappelli C, Miscione GP. Exploring Membrane Cholesterol Binding to the CB1 Receptor: A Computational Perspective. J Phys Chem B 2025. [PMID: 40268728 DOI: 10.1021/acs.jpcb.4c08076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Cholesterol (CHOL) is a potential allosteric modulator of the CB1 receptor. In this work, we use atomistic molecular dynamics simulations to study how CHOL interacts with CB1 and to identify its binding sites (BS) and residence times on specific receptor zones. Our results evince minimal changes in CB1 conformational dynamics and secondary structure due to CHOL. We report five BSs, three of which coincide with previously described interaction regions (BS1, BS2, and BS3), while BS4 and BS5 are proposed as new BSs. Quantum descriptors of bonding such as Natural Bond Orbitals (NBO), Quantum Theory of Atoms in Molecules (QTAIM), and Noncovalent Interactions (NCI) analyses are employed to characterize the CHOL-BS interactions. The results show an exponential correlation between the strength of the interactions (mainly hydrogen bonds and hydrophobic contacts) and the residence time at the BSs. Although other approaches exist to identify high-affinity protein sites, our methodology integrates classical and quantum descriptions to better characterize BSs and predict ligand residence times in CB1, distinguishing persistent from transitory contacts. Since CHOL has been suggested as a potential endogenous allosteric ligand, our flexible strategy allows studying interactions that stabilize CHOL in CB1, could be extended to cannabinoid binding, and contribute to designing improved receptor ligands.
Collapse
Affiliation(s)
- Manuela J Vanegas
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, 111711, Bogota, Colombia
| | - Sara Gómez
- Universidad Nacional de Colombia, Departamento de Química, Av. Cra 30 45-03, 111321, Bogotá, Colombia
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Gian Pietro Miscione
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, 111711, Bogota, Colombia
| |
Collapse
|
2
|
Altendorfer B, Benedetti A, Mrowetz H, Bernegger S, Bretl A, Preishuber-Pflügl J, Bessa de Sousa DM, Ladek AM, Koller A, Le Faouder P, Bertrand-Michel J, Trost A, Aigner L. Omega-3 EPA Supplementation Shapes the Gut Microbiota Composition and Reduces Major Histocompatibility Complex Class II in Aged Wild-Type and APP/PS1 Alzheimer's Mice: A Pilot Experimental Study. Nutrients 2025; 17:1108. [PMID: 40218866 PMCID: PMC11990804 DOI: 10.3390/nu17071108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Neuroinflammation, a hallmark of Alzheimer's disease (AD), is characterized by elevated levels of inflammatory signaling molecules, including cytokines and eicosanoids, as well as increased microglial reactivity, and is augmented by gut microbiota dysbiosis via the gut-brain axis. We conducted a pilot experiment to elucidate the anti-inflammatory effects of dietary omega-3 polyunsaturated fatty acid (ω-3 PUFA) eicosapentaenoic acid (EPA) on the gut microbiota and neuroinflammation. Methods: Female APP/PS1 mice (TG) and non-transgenic littermates (WT), 13-14 months old, were fed a diet supplemented with 0.3% EPA or control chow for 3 weeks. The gut microbiota composition, hippocampal and plasma eicosanoids levels, platelet activation, and microglial phagocytosis, as well as the brain and retinal genes and protein expression, were analyzed. Results: EPA supplementation decreased the percentage of Bacteroidetes and increased bacteria of the phylum Firmicutes in APP/PS1 and WT mice. Inflammatory lipid mediators were elevated in the hippocampus of the TG mice, accompanied by a reduction in the endocannabinoid docosahexaenoyl ethanolamide (DHEA). Dietary EPA did not affect hippocampal lipid mediators, but reduced the levels of arachidonic-derived 5-HETE and N-arachidonoylethanolamine (AEA) in WT plasma. Moreover, EPA supplementation decreased major histocompatibility complex class II (MHCII) gene expression in the retina in both genotypes, and MHCII+ cells in the hippocampus of TG mice. Conclusions: This pilot study showed that short-term EPA supplementation shaped the gut microbiota by increasing butyrate-producing bacteria of the Firmicutes phylum and decreasing Gram-negative LPS-producing bacteria of the Bacteroidetes phylum, and downregulated the inflammatory microglial marker MHCII in two distinct regions of the central nervous system (CNS). Further investigation is needed to determine whether EPA-mediated effects on the microbiome and microglial MHCII have beneficial long-term effects on AD pathology and cognition.
Collapse
Affiliation(s)
- Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (B.A.); (H.M.); (S.B.); (A.B.); (D.M.B.d.S.)
| | - Ariane Benedetti
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (B.A.); (H.M.); (S.B.); (A.B.); (D.M.B.d.S.)
| | - Sabine Bernegger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (B.A.); (H.M.); (S.B.); (A.B.); (D.M.B.d.S.)
| | - Alina Bretl
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (B.A.); (H.M.); (S.B.); (A.B.); (D.M.B.d.S.)
| | - Julia Preishuber-Pflügl
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.P.-P.); (A.M.L.); (A.K.); (A.T.)
| | - Diana Marisa Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (B.A.); (H.M.); (S.B.); (A.B.); (D.M.B.d.S.)
| | - Anja Maria Ladek
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.P.-P.); (A.M.L.); (A.K.); (A.T.)
| | - Andreas Koller
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.P.-P.); (A.M.L.); (A.K.); (A.T.)
| | - Pauline Le Faouder
- MetaToul-Lipidomique Core Facility, I2MC, Inserm 1048, 31432 Toulouse, France; (P.L.F.); (J.B.-M.)
| | - Justine Bertrand-Michel
- MetaToul-Lipidomique Core Facility, I2MC, Inserm 1048, 31432 Toulouse, France; (P.L.F.); (J.B.-M.)
| | - Andrea Trost
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.P.-P.); (A.M.L.); (A.K.); (A.T.)
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (B.A.); (H.M.); (S.B.); (A.B.); (D.M.B.d.S.)
- Austrian Cluster of Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
3
|
Johnson BW, Strand NH, Raynak JC, Jara C, Habtegiorgis K, Hand BA, Hong S, Maloney JA. Cannabinoids in Chronic Pain Management: A Review of the History, Efficacy, Applications, and Risks. Biomedicines 2025; 13:530. [PMID: 40149508 PMCID: PMC11940634 DOI: 10.3390/biomedicines13030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Chronic pain remains a pervasive and challenging public health issue, often resistant to conventional treatments such as opioids, which carry substantial risks of dependency and adverse effects. Cannabinoids, bioactive compounds derived from the Cannabis sativa plant and their synthetic analogs, have emerged as a potential alternative for pain management, leveraging their interaction with the endocannabinoid system to modulate pain and inflammation. Methods: The current, evolving literature regarding the history, efficacy, applications, and safety of cannabinoids in the treatment of chronic pain was reviewed and summarized to provide the most current review of cannabinoids. Results: Evidence suggests that cannabinoids provide moderate efficacy in managing neuropathic pain, fibromyalgia, cancer-related pain, and multiple sclerosis-related spasticity. Patient-reported outcomes further indicate widespread perceptions of cannabinoids as a safer alternative to opioids, with potential opioid-sparing effects. However, the quality of existing evidence is limited by small sample sizes and methodological inconsistencies. Regulatory barriers, including the classification of cannabis as a Schedule I substance in the United States, continue to hinder robust research and clinical integration. Moreover, the risks associated with cannabinoids, such as psychiatric effects, addiction potential, and drug interactions, necessitate cautious application. Conclusions: Cannabinoids represent a promising, albeit complex, alternative for chronic pain management, particularly given the limitations and risks of traditional therapies such as opioids. However, significant deficiencies remain in the research. While smaller trials and systematic reviews indicate therapeutic potential, the quality of evidence is often low due to limited sample sizes, short study durations, and methodological inconsistencies. Large-scale, randomized controlled trials with long-term follow-up are urgently needed to confirm efficacy and safety across diverse patient populations and pain etiologies.
Collapse
Affiliation(s)
- Brooks W. Johnson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA (J.C.R.); (J.A.M.)
| | - Natalie H. Strand
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA (J.C.R.); (J.A.M.)
| | - John C. Raynak
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA (J.C.R.); (J.A.M.)
| | - Christian Jara
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA (J.C.R.); (J.A.M.)
| | - Kisanet Habtegiorgis
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA (J.C.R.); (J.A.M.)
| | | | - Sang Hong
- Creighton University School of Medicine, Phoenix, AZ 85012, USA;
| | - Jillian A. Maloney
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA (J.C.R.); (J.A.M.)
| |
Collapse
|
4
|
Duczmal D, Bazan-Wozniak A, Niedzielska K, Pietrzak R. Cannabinoids-Multifunctional Compounds, Applications and Challenges-Mini Review. Molecules 2024; 29:4923. [PMID: 39459291 PMCID: PMC11510081 DOI: 10.3390/molecules29204923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabinoids represent a highly researched group of plant-derived ingredients. The substantial investment of funds from state and commercial sources has facilitated a significant increase in knowledge about these ingredients. Cannabinoids can be classified into three principal categories: plant-derived phytocannabinoids, synthetic cannabinoids and endogenous cannabinoids, along with the enzymes responsible for their synthesis and degradation. All of these compounds interact biologically with type 1 (CB1) and/or type 2 (CB2) cannabinoid receptors. A substantial body of evidence from in vitro and in vivo studies has demonstrated that cannabinoids and inhibitors of endocannabinoid degradation possess anti-inflammatory, antioxidant, antitumour and antifibrotic properties with beneficial effects. This review, which spans the period from 1940 to 2024, offers an overview of the potential therapeutic applications of natural and synthetic cannabinoids. The development of these substances is essential for the global market of do-it-yourself drugs to fully exploit the promising therapeutic properties of cannabinoids.
Collapse
Affiliation(s)
- Dominik Duczmal
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Polygen Sp. z o.o., Górnych Wałów 46/1, 44-100 Gliwice, Poland;
| | - Aleksandra Bazan-Wozniak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | | | - Robert Pietrzak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
5
|
Sip S, Stasiłowicz-Krzemień A, Sip A, Szulc P, Neumann M, Kryszak A, Cielecka-Piontek J. Development of Delivery Systems with Prebiotic and Neuroprotective Potential of Industrial-Grade Cannabis sativa L. Molecules 2024; 29:3574. [PMID: 39124978 PMCID: PMC11314201 DOI: 10.3390/molecules29153574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
This study delves into the transformative effects of supercritical carbon dioxide (scCO2) cannabis extracts and prebiotic substances (dextran, inulin, trehalose) on gut bacteria, coupled with a focus on neuroprotection. Extracts derived from the Białobrzeska variety of Cannabis sativa, utilising supercritical fluid extraction (SFE), resulted in notable cannabinoid concentrations (cannabidiol (CBD): 6.675 ± 0.166; tetrahydrocannabinol (THC): 0.180 ± 0.006; cannabigerol (CBG): 0.434 ± 0.014; cannabichromene (CBC): 0.490 ± 0.017; cannabinol (CBN): 1.696 ± 0.047 mg/gD). The assessment encompassed antioxidant activity via four in vitro assays and neuroprotective effects against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The extract boasting the highest cannabinoid content exhibited remarkable antioxidant potential and significant inhibitory activity against both enzymes. Further investigation into prebiotic deliveries revealed their proficiency in fostering the growth of beneficial gut bacteria while maintaining antioxidant and neuroprotective functionalities. This study sheds light on the active compounds present in the Białobrzeska variety, showcasing their therapeutic potential within prebiotic systems. Notably, the antioxidant, neuroprotective, and prebiotic properties observed underscore the promising therapeutic applications of these extracts. The results offer valuable insights for potential interventions in antioxidant, neuroprotective, and prebiotic domains. In addition, subsequent analyses of cannabinoid concentrations post-cultivation revealed nuanced changes, emphasising the need for further exploration into the dynamic interactions between cannabinoids and the gut microbiota.
Collapse
Affiliation(s)
- Szymon Sip
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (S.S.); (A.S.-K.)
| | - Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (S.S.); (A.S.-K.)
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland;
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (P.S.); (M.N.)
| | - Małgorzata Neumann
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (P.S.); (M.N.)
| | - Aleksandra Kryszak
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (S.S.); (A.S.-K.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| |
Collapse
|
6
|
Urmeneta-Ortíz MF, Tejeda-Martínez AR, González-Reynoso O, Flores-Soto ME. Potential Neuroprotective Effect of the Endocannabinoid System on Parkinson's Disease. PARKINSON'S DISEASE 2024; 2024:5519396. [PMID: 39104613 PMCID: PMC11300097 DOI: 10.1155/2024/5519396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by alterations in motor capacity resulting from a decrease in the neurotransmitter dopamine due to the selective death of dopaminergic neurons of the nigrostriatal pathway. Unfortunately, conventional pharmacological treatments fail to halt disease progression; therefore, new therapeutic strategies are needed, and currently, some are being investigated. The endocannabinoid system (ECS), highly expressed in the basal ganglia (BG) circuit, undergoes alterations in response to dopaminergic depletion, potentially contributing to motor symptoms and the etiopathogenesis of PD. Substantial evidence supports the neuroprotective role of the ECS through various mechanisms, including anti-inflammatory, antioxidative, and antiapoptotic effects. Therefore, the ECS emerges as a promising target for PD treatment. This review provides a comprehensive summary of current clinical and preclinical evidence concerning ECS alterations in PD, along with potential pharmacological targets that may exert the protection of dopaminergic neurons.
Collapse
Affiliation(s)
- María Fernanda Urmeneta-Ortíz
- Chemical Engineering Department, University Center for Exact and Engineering SciencesUniversity of Guadalajara, Blvd. M. García Barragán # 1451, Guadalajara C.P. 44430, Jalisco, Mexico
- Cellular and Molecular Neurobiology LaboratoryNeurosciences DivisionWestern Biomedical Research Center (CIBO)Mexican Social Security Institute, Sierra Mojada #800, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| | - Aldo Rafael Tejeda-Martínez
- Cellular and Molecular Neurobiology LaboratoryNeurosciences DivisionWestern Biomedical Research Center (CIBO)Mexican Social Security Institute, Sierra Mojada #800, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| | - Orfil González-Reynoso
- Chemical Engineering Department, University Center for Exact and Engineering SciencesUniversity of Guadalajara, Blvd. M. García Barragán # 1451, Guadalajara C.P. 44430, Jalisco, Mexico
| | - Mario Eduardo Flores-Soto
- Cellular and Molecular Neurobiology LaboratoryNeurosciences DivisionWestern Biomedical Research Center (CIBO)Mexican Social Security Institute, Sierra Mojada #800, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
7
|
Kaszyńska AA. Cannabinoids: Potential for Modulation and Enhancement When Combined with Vitamin B12 in Case of Neurodegenerative Disorders. Pharmaceuticals (Basel) 2024; 17:813. [PMID: 38931480 PMCID: PMC11207064 DOI: 10.3390/ph17060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The enduring relationship between humanity and the cannabis plant has witnessed significant transformations, particularly with the widespread legalization of medical cannabis. This has led to the recognition of diverse pharmacological formulations of medical cannabis, containing 545 identified natural compounds, including 144 phytocannabinoids like Δ9-THC and CBD. Cannabinoids exert distinct regulatory effects on physiological processes, prompting their investigation in neurodegenerative diseases. Recent research highlights their potential in modulating protein aggregation and mitochondrial dysfunction, crucial factors in conditions such as Alzheimer's Disease, multiple sclerosis, or Parkinson's disease. The discussion emphasizes the importance of maintaining homeodynamics in neurodegenerative disorders and explores innovative therapeutic approaches such as nanoparticles and RNA aptamers. Moreover, cannabinoids, particularly CBD, demonstrate anti-inflammatory effects through the modulation of microglial activity, offering multifaceted neuroprotection including mitigating aggregation. Additionally, the potential integration of cannabinoids with vitamin B12 presents a holistic framework for addressing neurodegeneration, considering their roles in homeodynamics and nervous system functioning including the hippocampal neurogenesis. The potential synergistic therapeutic benefits of combining CBD with vitamin B12 underscore a promising avenue for advancing treatment strategies in neurodegenerative diseases. However, further research is imperative to fully elucidate their effects and potential applications, emphasizing the dynamic nature of this field and its potential to reshape neurodegenerative disease treatment paradigms.
Collapse
Affiliation(s)
- Anna Aleksandra Kaszyńska
- The Centre of Neurocognitive Research, Institute of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, 03-815 Warszawa, Poland
| |
Collapse
|
8
|
Sharon N, Yarmolinsky L, Khalfin B, Fleisher-Berkovich S, Ben-Shabat S. Cannabinoids' Role in Modulating Central and Peripheral Immunity in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:6402. [PMID: 38928109 PMCID: PMC11204381 DOI: 10.3390/ijms25126402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabinoids (the endocannabinoids, the synthetic cannabinoids, and the phytocannabinoids) are well known for their various pharmacological properties, including neuroprotective and anti-inflammatory features, which are fundamentally important for the treatment of neurodegenerative diseases. The aging of the global population is causing an increase in these diseases that require the development of effective drugs to be even more urgent. Taking into account the unavailability of effective drugs for neurodegenerative diseases, it seems appropriate to consider the role of cannabinoids in the treatment of these diseases. To our knowledge, few reviews are devoted to cannabinoids' impact on modulating central and peripheral immunity in neurodegenerative diseases. The objective of this review is to provide the best possible information about the cannabinoid receptors and immuno-modulation features, peripheral immune modulation by cannabinoids, cannabinoid-based therapies for the treatment of neurological disorders, and the future development prospects of making cannabinoids versatile tools in the pursuit of effective drugs.
Collapse
Affiliation(s)
| | | | | | | | - Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (N.S.); (L.Y.); (B.K.); (S.F.-B.)
| |
Collapse
|
9
|
Neamțu M, Bild V, Vasincu A, Arcan OD, Bulea D, Ababei DC, Rusu RN, Macadan I, Sciucă AM, Neamțu A. Inflammasome Molecular Insights in Autoimmune Diseases. Curr Issues Mol Biol 2024; 46:3502-3532. [PMID: 38666950 PMCID: PMC11048795 DOI: 10.3390/cimb46040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Autoimmune diseases (AIDs) emerge due to an irregular immune response towards self- and non-self-antigens. Inflammation commonly accompanies these conditions, with inflammatory factors and inflammasomes playing pivotal roles in their progression. Key concepts in molecular biology, inflammation, and molecular mimicry are crucial to understanding AID development. Exposure to foreign antigens can cause inflammation, potentially leading to AIDs through molecular mimicry triggered by cross-reactive epitopes. Molecular mimicry emerges as a key mechanism by which infectious or chemical agents trigger autoimmunity. In certain susceptible individuals, autoreactive T or B cells may be activated by a foreign antigen due to resemblances between foreign and self-peptides. Chronic inflammation, typically driven by abnormal immune responses, is strongly associated with AID pathogenesis. Inflammasomes, which are vital cytosolic multiprotein complexes assembled in response to infections and stress, are crucial to activating inflammatory processes in macrophages. Chronic inflammation, characterized by prolonged tissue injury and repair cycles, can significantly damage tissues, thereby increasing the risk of AIDs. Inhibiting inflammasomes, particularly in autoinflammatory disorders, has garnered significant interest, with pharmaceutical advancements targeting cytokines and inflammasomes showing promise in AID management.
Collapse
Affiliation(s)
- Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
- Center of Biomedical Research of the Romanian Academy, 8 Carol I Avenue, 700506 Iasi, Romania
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Delia Bulea
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ana Maria Sciucă
- Department of Oral Medicine, Oral Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Neamțu
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
10
|
Mugnaini C, Brizzi A, Paolino M, Scarselli E, Castelli R, de Candia M, Gambacorta N, Nicolotti O, Kostrzewa M, Kumar P, Mahmoud AM, Borgonetti V, Iannotta M, Morace A, Galeotti N, Maione S, Altomare CD, Ligresti A, Corelli F. Novel Dual-Acting Hybrids Targeting Type-2 Cannabinoid Receptors and Cholinesterase Activity Show Neuroprotective Effects In Vitro and Amelioration of Cognitive Impairment In Vivo. ACS Chem Neurosci 2024; 15:955-971. [PMID: 38372253 DOI: 10.1021/acschemneuro.3c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative form of dementia characterized by the loss of synapses and a progressive decline in cognitive abilities. Among current treatments for AD, acetylcholinesterase (AChE) inhibitors have efficacy limited to symptom relief, with significant side effects and poor compliance. Pharmacological agents that modulate the activity of type-2 cannabinoid receptors (CB2R) of the endocannabinoid system by activating or blocking them have also been shown to be effective against neuroinflammation. Herein, we describe the design, synthesis, and pharmacological effects in vitro and in vivo of dual-acting compounds that inhibit AChE and butyrylcholinesterase (BChE) and target CB2R. Within the investigated series, compound 4g proved to be the most promising. It achieved IC50 values in the low micromolar to submicromolar range against both human cholinesterase isoforms while antagonizing CB2R with Ki of 31 nM. Interestingly, 4g showed neuroprotective effects on the SH-SY5Y cell line thanks to its ability to prevent oxidative stress-induced cell toxicity and reverse scopolamine-induced amnesia in the Y-maze forced alternation test in vivo.
Collapse
Affiliation(s)
- Claudia Mugnaini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Marco Paolino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Enrico Scarselli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Riccardo Castelli
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Nicola Gambacorta
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Naples ,Italy
| | - Poulami Kumar
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Naples ,Italy
| | - Ali Mokhtar Mahmoud
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Naples ,Italy
| | - Vittoria Borgonetti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50121 Florence, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli″, 80138 Naples, Italy
| | - Andrea Morace
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli″, 80138 Naples, Italy
| | - Nicoletta Galeotti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50121 Florence, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli″, 80138 Naples, Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Naples ,Italy
| | - Federico Corelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
11
|
Ababei DC, Bild V, Macadan I, Vasincu A, Rusu RN, Blaj M, Stanciu GD, Lefter RM, Bild W. Therapeutic Implications of Renin-Angiotensin System Modulators in Alzheimer's Dementia. Pharmaceutics 2023; 15:2290. [PMID: 37765259 PMCID: PMC10538010 DOI: 10.3390/pharmaceutics15092290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The Renin-Angiotensin System (RAS) has attracted considerable interest beyond its traditional cardiovascular role due to emerging data indicating its potential involvement in neurodegenerative diseases, including Alzheimer's dementia (AD). This review investigates the therapeutic implications of RAS modulators, specifically focusing on angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), and renin inhibitors in AD. ACEIs, commonly used for hypertension, show promise in AD by reducing angiotensin (Ang) II levels. This reduction is significant as Ang II contributes to neuroinflammation, oxidative stress, and β-amyloid (Aβ) accumulation, all implicated in AD pathogenesis. ARBs, known for vasodilation, exhibit neuroprotection by blocking Ang II receptors, improving cerebral blood flow and cognitive decline in AD models. Renin inhibitors offer a novel approach by targeting the initial RAS step, displaying anti-inflammatory and antioxidant effects that mitigate AD degeneration. Preclinical studies demonstrate RAS regulation's favorable impact on neuroinflammation, neuronal damage, cognitive function, and Aβ metabolism. Clinical trials on RAS modulators in AD are limited, but with promising results, ARBs being more effective that ACEIs in reducing cognitive decline. The varied roles of ACEIs, ARBs, and renin inhibitors in RAS modulation present a promising avenue for AD therapeutic intervention, requiring further research to potentially transform AD treatment strategies.
Collapse
Affiliation(s)
- Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (A.V.); (R.-N.R.)
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (A.V.); (R.-N.R.)
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 8 Carol I Avenue, 700506 Iasi, Romania; (R.-M.L.); (W.B.)
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (A.V.); (R.-N.R.)
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (A.V.); (R.-N.R.)
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (A.V.); (R.-N.R.)
| | - Mihaela Blaj
- Department of Anaesthesiology and Intensive Therapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Radu-Marian Lefter
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 8 Carol I Avenue, 700506 Iasi, Romania; (R.-M.L.); (W.B.)
| | - Walther Bild
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 8 Carol I Avenue, 700506 Iasi, Romania; (R.-M.L.); (W.B.)
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
12
|
Li Y, Zhi W, Qi B, Wang L, Hu X. Update on neurobiological mechanisms of fear: illuminating the direction of mechanism exploration and treatment development of trauma and fear-related disorders. Front Behav Neurosci 2023; 17:1216524. [PMID: 37600761 PMCID: PMC10433239 DOI: 10.3389/fnbeh.2023.1216524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Fear refers to an adaptive response in the face of danger, and the formed fear memory acts as a warning when the individual faces a dangerous situation again, which is of great significance to the survival of humans and animals. Excessive fear response caused by abnormal fear memory can lead to neuropsychiatric disorders. Fear memory has been studied for a long time, which is of a certain guiding effect on the treatment of fear-related disorders. With continuous technological innovations, the study of fear has gradually shifted from the level of brain regions to deeper neural (micro) circuits between brain regions and even within single brain regions, as well as molecular mechanisms. This article briefly outlines the basic knowledge of fear memory and reviews the neurobiological mechanisms of fear extinction and relapse, which aims to provide new insights for future basic research on fear emotions and new ideas for treating trauma and fear-related disorders.
Collapse
Affiliation(s)
- Ying Li
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijia Zhi
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bing Qi
- College of Education, Hebei University, Baoding, China
| | - Lifeng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Hu
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
13
|
Vasincu A, Rusu RN, Ababei DC, Neamțu M, Arcan OD, Macadan I, Beșchea Chiriac S, Bild W, Bild V. Exploring the Therapeutic Potential of Cannabinoid Receptor Antagonists in Inflammation, Diabetes Mellitus, and Obesity. Biomedicines 2023; 11:1667. [PMID: 37371762 DOI: 10.3390/biomedicines11061667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Recently, research has greatly expanded the knowledge of the endocannabinoid system (ECS) and its involvement in several therapeutic applications. Cannabinoid receptors (CBRs) are present in nearly every mammalian tissue, performing a vital role in different physiological processes (neuronal development, immune modulation, energy homeostasis). The ECS has an essential role in metabolic control and lipid signaling, making it a potential target for managing conditions such as obesity and diabetes. Its malfunction is closely linked to these pathological conditions. Additionally, the immunomodulatory function of the ECS presents a promising avenue for developing new treatments for various types of acute and chronic inflammatory conditions. Preclinical investigations using peripherally restricted CBR antagonists that do not cross the BBB have shown promise for the treatment of obesity and metabolic diseases, highlighting the importance of continuing efforts to discover novel molecules with superior safety profiles. The purpose of this review is to examine the roles of CB1R and CB2Rs, as well as their antagonists, in relation to the above-mentioned disorders.
Collapse
Affiliation(s)
- Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Sorin Beșchea Chiriac
- Department of Toxicology, "Ion Ionescu de la Brad" University of Life Sciences, 8 M. Sadoveanu Alley, 700489 Iasi, Romania
| | - Walther Bild
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
14
|
Soleymani T, Chen TY, Gonzalez-Kozlova E, Dogra N. The human neurosecretome: extracellular vesicles and particles (EVPs) of the brain for intercellular communication, therapy, and liquid-biopsy applications. Front Mol Biosci 2023; 10:1156821. [PMID: 37266331 PMCID: PMC10229797 DOI: 10.3389/fmolb.2023.1156821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Emerging evidence suggests that brain derived extracellular vesicles (EVs) and particles (EPs) can cross blood-brain barrier and mediate communication among neurons, astrocytes, microglial, and other cells of the central nervous system (CNS). Yet, a complete understanding of the molecular landscape and function of circulating EVs & EPs (EVPs) remain a major gap in knowledge. This is mainly due to the lack of technologies to isolate and separate all EVPs of heterogeneous dimensions and low buoyant density. In this review, we aim to provide a comprehensive understanding of the neurosecretome, including the extracellular vesicles that carry the molecular signature of the brain in both its microenvironment and the systemic circulation. We discuss the biogenesis of EVPs, their function, cell-to-cell communication, past and emerging isolation technologies, therapeutics, and liquid-biopsy applications. It is important to highlight that the landscape of EVPs is in a constant state of evolution; hence, we not only discuss the past literature and current landscape of the EVPs, but we also speculate as to how novel EVPs may contribute to the etiology of addiction, depression, psychiatric, neurodegenerative diseases, and aid in the real time monitoring of the "living brain". Overall, the neurosecretome is a concept we introduce here to embody the compendium of circulating particles of the brain for their function and disease pathogenesis. Finally, for the purpose of inclusion of all extracellular particles, we have used the term EVPs as defined by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Taliah Soleymani
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tzu-Yi Chen
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Edgar Gonzalez-Kozlova
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Navneet Dogra
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
15
|
Filipiuc LE, Ştefănescu R, Solcan C, Ciorpac M, Szilagyi A, Cojocaru D, Stanciu GD, Creangă I, Caratașu CC, Ababei DC, Gavrila RE, Timofte AD, Filipiuc SI, Bild V. Acute Toxicity and Pharmacokinetic Profile of an EU-GMP-Certified Cannabis sativa L. in Rodents. Pharmaceuticals (Basel) 2023; 16:ph16050694. [PMID: 37242477 DOI: 10.3390/ph16050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
The conundrum of Cannabis sativa's applications for therapeutical purposes is set apart by the hundreds of known and commercially available strains, the social, cultural and historical context, and the legalization of its use for medical purposes in various jurisdictions around the globe. In an era where targeted therapies are continuously being developed and have become the norm, it is imperative to conduct standardized, controlled studies on strains currently cultivated under Good Manufacturing Practices (GMP) certification, a standard that guarantees the quality requirements for modern medical and therapeutic use. Thus, the aim of our study is to evaluate the acute toxicity of a 15.6% THC: <1% CBD, EU-GMP certified, Cannabis sativa L. in rodents, following the OECD acute oral toxicity guidelines, and to provide an overview of its pharmacokinetic profile. Groups of healthy female Sprague-Dawley rats were treated orally with a stepwise incremental dose, each step using three animals. The absence or presence of plant-induced mortality in rats dosed at one step determined the next step. For the EU GMP-certified Cannabis sativa L. investigated, we determined an oral LD50 value of over 5000 mg/kg in rats and a human equivalent oral dose of ≈806.45 mg/kg. Additionally, no significant clinical signs of toxicity or gross pathological findings were observed. According to our data, the toxicology, safety and pharmacokinetic profile of the tested EU-GMP-certified Cannabis sativa L. support further investigations through efficacy and chronic toxicity studies in preparation for potential future clinical applications and especially for the treatment of chronic pain.
Collapse
Affiliation(s)
- Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Raluca Ştefănescu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, 700490 Iasi, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Dana Cojocaru
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ioana Creangă
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cătălin-Cezar Caratașu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Roxana-Elena Gavrila
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei-Daniel Timofte
- Histology Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Silviu-Iulian Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Veronica Bild
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
16
|
Govindarajan RK, Mishra AK, Cho KH, Kim KH, Yoon KM, Baek KH. Biosynthesis of Phytocannabinoids and Structural Insights: A Review. Metabolites 2023; 13:442. [PMID: 36984882 PMCID: PMC10051821 DOI: 10.3390/metabo13030442] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Cannabis belongs to the family Cannabaceae, and phytocannabinoids are produced by the Cannabis sativa L. plant. A long-standing debate regarding the plant is whether it contains one or more species. Phytocannabinoids are bioactive natural products found in flowers, seeds, and fruits. They can be beneficial for treating human diseases (such as multiple sclerosis, neurodegenerative diseases, epilepsy, and pain), the cellular metabolic process, and regulating biological function systems. In addition, several phytocannabinoids are used in various therapeutic and pharmaceutical applications. This study provides an overview of the different sources of phytocannabinoids; further, the biosynthesis of bioactive compounds involving various pathways is elucidated. The structural classification of phytocannabinoids is based on their decorated resorcinol core and the bioactivities of naturally occurring cannabinoids. Furthermore, phytocannabinoids have been studied in terms of their role in animal models and antimicrobial activity against bacteria and fungi; further, they show potential for therapeutic applications and are used in treating various human diseases. Overall, this review can help deepen the current understanding of the role of biotechnological approaches and the importance of phytocannabinoids in different industrial applications.
Collapse
Affiliation(s)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Kiu-Hyung Cho
- Gyeongbuk Institute for Bioindustry, Andong 36618, Gyeongbuk, Republic of Korea
| | - Ki-Hyun Kim
- Gyeongbuk Institute for Bioindustry, Andong 36618, Gyeongbuk, Republic of Korea
| | - Kyoung Mi Yoon
- Gyeongbuk Institute for Bioindustry, Andong 36618, Gyeongbuk, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
17
|
Palmisano M, Gargano A, Olabiyi BF, Lutz B, Bilkei-Gorzo A. Hippocampal Deletion of CB1 Receptor Impairs Social Memory and Leads to Age-Related Changes in the Hippocampus of Adult Mice. Int J Mol Sci 2022; 24:ijms24010026. [PMID: 36613469 PMCID: PMC9819823 DOI: 10.3390/ijms24010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Endocannabinoid system activity declines with age in the hippocampus, along with the density of the cannabinoid receptor type-1 (CB1). This process might contribute to brain ageing, as previous studies showed that the constitutive deletion of the CB1 receptor in mice leads to early onset of memory deficits and histological signs of ageing in the hippocampus including enhanced pro-inflammatory glial activity and reduced neurogenesis. Here we asked whether the CB1 receptor exerts its activity locally, directly influencing hippocampal ageing or indirectly, accelerating systemic ageing. Thus, we deleted the CB1 receptor site-specifically in the hippocampus of 2-month-old CB1flox/flox mice using stereotaxic injections of rAAV-Cre-Venus viruses and assessed their social recognition memory four months later. Mice with hippocampus-specific deletion of the CB1 receptor displayed a memory impairment, similarly as observed in constitutive knockouts at the same age. We next analysed neuroinflammatory changes in the hippocampus, neuronal density and cell proliferation. Site-specific mutant mice had enhanced glial cell activity, up-regulated levels of TNFα in the hippocampus and decreased cell proliferation, specifically in the subgranular zone of the dentate gyrus. Our data indicate that a local activity of the CB1 receptor in the hippocampus is required to maintain neurogenesis and to prevent neuroinflammation and cognitive decline.
Collapse
Affiliation(s)
- Michela Palmisano
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53125 Bonn, Germany
| | - Alessandra Gargano
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53125 Bonn, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53125 Bonn, Germany
- Correspondence: ; Tel.: +49-0228-6885-317
| |
Collapse
|
18
|
Costa AC, Joaquim HPG, Pedrazzi JFC, Pain ADO, Duque G, Aprahamian I. Cannabinoids in Late Life Parkinson's Disease and Dementia: Biological Pathways and Clinical Challenges. Brain Sci 2022; 12:brainsci12121596. [PMID: 36552056 PMCID: PMC9775654 DOI: 10.3390/brainsci12121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The use of cannabinoids as therapeutic drugs has increased among aging populations recently. Age-related changes in the endogenous cannabinoid system could influence the effects of therapies that target the cannabinoid system. At the preclinical level, cannabidiol (CBD) induces anti-amyloidogenic, antioxidative, anti-apoptotic, anti-inflammatory, and neuroprotective effects. These findings suggest a potential therapeutic role of cannabinoids to neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer. Emerging evidence suggests that CBD and tetrahydrocannabinol have neuroprotective therapeutic-like effects on dementias. In clinical practice, cannabinoids are being used off-label to relieve symptoms of PD and AD. In fact, patients are using cannabis compounds for the treatment of tremor, non-motor symptoms, anxiety, and sleep assistance in PD, and managing responsive behaviors of dementia such as agitation. However, strong evidence from clinical trials is scarce for most indications. Some clinicians consider cannabinoids an alternative for older adults bearing Parkinson's disease and Alzheimer's dementia with a poor response to first-line treatments. In our concept and experience, cannabinoids should never be considered a first-line treatment but could be regarded as an adjuvant therapy in specific situations commonly seen in clinical practice. To mitigate the risk of adverse events, the traditional dogma of geriatric medicine, starting with a low dose and proceeding with a slow titration regime, should also be employed with cannabinoids. In this review, we aimed to address preclinical evidence of cannabinoids in neurodegenerative disorders such as PD and AD and discuss potential off-label use of cannabinoids in clinical practice of these disorders.
Collapse
Affiliation(s)
- Alana C. Costa
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-903, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-010, Brazil
| | - Helena P. G. Joaquim
- Department of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - João F. C. Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo 05403-903, Brazil
| | - Andreia de O. Pain
- Group of Investigation on Multimorbidity and Mental Health in Aging (GIMMA), Geriatrics Division, Department of Internal Medicine, Jundiaí Medical School, Jundiaí 13202-550, Brazil
| | - Gustavo Duque
- Division of Geriatric Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Ivan Aprahamian
- Group of Investigation on Multimorbidity and Mental Health in Aging (GIMMA), Geriatrics Division, Department of Internal Medicine, Jundiaí Medical School, Jundiaí 13202-550, Brazil
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
19
|
Cannabinoid CB2 Receptors in Neurodegenerative Proteinopathies: New Insights and Therapeutic Potential. Biomedicines 2022; 10:biomedicines10123000. [PMID: 36551756 PMCID: PMC9775106 DOI: 10.3390/biomedicines10123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Some of the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's disease, are proteinopathies characterized by the accumulation of specific protein aggregates in the brain. Such misfolded protein aggregates can trigger modulation of the innate and adaptive immune systems and subsequently lead to chronic neuroinflammation that drives the onset and progression of neurodegenerative diseases. Since there is still no effective disease-modifying treatment, new therapeutic targets for neurodegenerative proteinopathies have been sought. The endocannabinoid system, and in particular the cannabinoid CB2 receptors, have been extensively studied, due to their important role in neuroinflammation, especially in microglial cells. Several studies have shown promising effects of CB2 receptor activation on reducing protein aggregation-based pathology as well as on attenuating inflammation and several dementia-related symptoms. In this review, we discuss the available data on the role of CB2 receptors in neuroinflammation and the potential benefits and limitations of specific agonists of these receptors in the therapy of neurodegenerative proteinopathies.
Collapse
|
20
|
Wang L, Chen X, Zhang H, Hong L, Wang J, Shao L, Chen G, Wu J. Comprehensive analysis of transient receptor potential channels-related signature for prognosis, tumor immune microenvironment, and treatment response of colorectal cancer. Front Immunol 2022; 13:1014834. [PMID: 36389750 PMCID: PMC9642045 DOI: 10.3389/fimmu.2022.1014834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Transient receptor potential channels (TRPC) play critical regulatory functions in cancer occurrence and progression. However, knowledge on its role in colorectal cancer (CRC) is limited. In addition, neoadjuvant treatment and immune checkpoint inhibitors (ICIs) have increasing roles in CRC management, but not all patients benefit from them. In this study, a TRPC related signature (TRPCRS) was constructed for prognosis, tumor immune microenvironment (TIME), and treatment response of CRC. METHODS Data on CRC gene expression and clinical features were retrospectively collected from TCGA and GEO databases. Twenty-eight TRPC regulators (TRPCR) were retrieved using gene set enrichment analysis. Different TRPCR expression patterns were identified using non-negative matrix factorization for consensus clustering, and a TRPCRS was established using LASSO. The potential value of TRPCRS was assessed using functional enrichment analysis, tumor immune analysis, tumor somatic mutation analysis, and response to preoperative chemoradiotherapy or ICIs. Moreover, an external validation was conducted using rectal cancer samples that received preoperative chemoradiotherapy at Fujian Cancer Hospital (FJCH) via qRT-PCR. RESULTS Among 834 CRC samples in the TCGA and meta-GEO cohorts, two TRPCR expression patterns were identified, which were associated with various immune infiltrations. In addition, 266 intersected genes from 5564 differentially expressed genes (DEGs) between two TRPC subtypes, 4605 DEGs between tumor tissue and adjacent non-tumor tissue (all FDR< 0.05, adjusted P< 0.001), and 1329 prognostic related genes (P< 0.05) were identified to establish the TRPCRS, which was confirmed in the TCGA cohort, two cohorts from GEO, and one qRT-PCR cohort from FJCH. According to the current signature, the high-TRPC score group had higher expressions of PD-1, PD-L1, and CTLA4, lower TIDE score, and improved response to anti-PD-1 treatment with better predictive ability. Compared to the high-TRPC score group, the low-TRPC score group comprised an immunosuppressive phenotype with increased infiltration of neutrophils and activated MAPK signaling pathway, but was more sensitive to preoperative chemoradiotherapy and associated with improved prognosis. CONCLUSIONS The current TRPCRS predicted the prognosis of CRC, evaluated the TIME in CRC, and anticipated the response to immune therapy and neoadjuvant treatment.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xingte Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Hejun Zhang
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Liang Hong
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jianchao Wang
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Lingdong Shao
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Gang Chen
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Junxin Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|