1
|
Koç DE, Ustaoğlu B, Biltekin D. Effect of climate change on the habitat suitability of the relict species Zelkova carpinifolia Spach using ensembled species distribution modelling. Sci Rep 2024; 14:27967. [PMID: 39543264 PMCID: PMC11564813 DOI: 10.1038/s41598-024-78733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Zelkova carpinifolia is a Tertiary relict tree distributed in Hyrcanian and Colchic forests. Most of its habitat has been destroyed in the last century. This study aimed to model potentially suitable habitat areas for Zelkova carpinifolia from the past to the future. The Last Glacial Maximum (LGM) and Future (2061-2080) models include 19 bioclimatic variables from the CCSM4 global circulation model Pearson correlation coefficient was used to assess collinearity between variables and ten variables were selected for distribution modelling. Habitat suitability was estimated using the Biodiversity Modelling (BIOMOD) ensemble modelling method by combining the results of ten algorithm models using the R package "biomod2". The area under the curve (AUC) of the receiver operating characteristic (ROC) curve and true skills statistics (TSS) were calculated to evaluate the performance of the models. The contributions of the environmental variables were calculated separately for each algorithm model. According to the results obtained, the most effective bioclimatic variable in the distribution of the species is temperature seasonality (Bio4). The modelling results revealed that Zelkova carpinifolia survived in suitable refuge areas in western Asia during the LGM. These distribution areas have remained largely unchanged and even expanded. The future model results predict that the suitable habitats of the species will narrow in the Hyrcanian forests south of Caspian Sea and that more suitable conditions will be found around the Caucasus. Given the increasing destruction of these valuable plant species due to human activities and the expected negative impacts of climate change in the future, it is important to develop policies and strategies for the protection of Zelkova carpinifolia's habitat, the creation of nature reserves, and sustainability.
Collapse
Affiliation(s)
- Derya Evrim Koç
- Faculty of Humanities and Social Science, Department of Geography, Sakarya University, Serdivan, 54050, Sakarya, Türkiye.
| | - Beyza Ustaoğlu
- Faculty of Humanities and Social Science, Department of Geography, Sakarya University, Serdivan, 54050, Sakarya, Türkiye
| | - Demet Biltekin
- Eurasia Institute of Earth Sciences, Ecology and Evolution Department, İstanbul Technical University, İstanbul, 34469, Türkiye
| |
Collapse
|
2
|
Gong W, Oubounyt M, Baumbach J, Dresselhaus T. Heat-stress-induced ROS in maize silks cause late pollen tube growth arrest and sterility. iScience 2024; 27:110081. [PMID: 38979009 PMCID: PMC11228802 DOI: 10.1016/j.isci.2024.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 07/10/2024] Open
Abstract
The reproductive phase of plants is highly sensitive to ambient temperature stresses. To investigate sensitivity of female reproductive organs in grass crops during the pollination phase, we exposed the elongated stigma (silk) of maize to ambient environment at the silking stage. Moderate heat stress causes cell death of silk hair cells but did not affect early pollen tube growth inside the silk. Late pollen tube growth arrest was observed, leading to sterility. Heat stress causes elevated levels of reactive oxygen species (ROS) in silks, whose levels can be reduced by scavengers partly restoring pollen tube growth and fertility. A number of biological processes including hydrogen peroxide catabolic processes and bHLH transcription factor genes are downregulated by heat stress, while some NAC transcription factor genes are strongly upregulated. In conclusion, this study now provides a basis to select genes for engineering heat-stress-tolerant grass crops during the pollination phase.
Collapse
Affiliation(s)
- Wen Gong
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Mhaned Oubounyt
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 22607 Hamburg, Germany
| | - Jan Baumbach
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 22607 Hamburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
3
|
Bhat IA, Fayaz M, Rafiq S, Guleria K, Qadir J, Wani TA, Kaloo ZA. Predicting potential distribution and range dynamics of Aquilegia fragrans under climate change: insights from ensemble species distribution modelling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:623. [PMID: 37115430 DOI: 10.1007/s10661-023-11245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Climate change is one of the primary causes of species redistribution and biodiversity loss, especially for threatened and endemic important plant species. Therefore, it is vital to comprehend "how" and "where" priority medicinal and aromatic plants (MAPs) might be effectively used to address conservation-related issues under rapid climate change. In the present study, an ensemble modelling approach was used to investigate the present and future distribution patterns of Aquilegia fragrans Benth. under climate change in the entire spectrum of Himalayan biodiversity hotspot. The results of the current study revealed that, under current climatic conditions, the northwest states of India (Jammu and Kashmir, Himachal Pradesh and the northern part of Uttarakhand), the eastern and southern parts of Pakistan Himalaya have highly suitable climatic conditions for the growth of A. fragrans. The ensemble model exhibited high forecast accuracy, with temperature seasonality and precipitation seasonality as the main climatic variables responsible for the distribution of the A. fragrans in the biodiversity hotspot. Furthermore, the study predicted that future climate change scenarios will diminish habitat suitability for the species by -46.9% under RCP4.5 2050 and -55.0% under RCP4.5 2070. Likewise, under RCP8.5, the habitat suitability will decrease by -51.7% in 2050 and -94.3% in 2070. The current study also revealed that the western Himalayan area will show the most habitat loss. Some currently unsuitable regions, such as the northern Himalayan regions of Pakistan, will become more suitable under climate change scenarios. Hopefully, the current approach may provide a robust technique and showcases a model with learnings for predicting cultivation hotspots and developing scientifically sound conservation plans for this endangered medicinal plant in the Himalayan biodiversity hotspot.
Collapse
Affiliation(s)
- Irshad Ahmad Bhat
- Plant Tissue Culture Research Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India.
| | - Mudasir Fayaz
- Plant Tissue Culture Research Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Shah Rafiq
- Plant Tissue Culture Research Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Khushboo Guleria
- Department of Zoology, School of Bioscience and Bioengineering, Lovely Professional University, Punjab, 144411, India
| | - Jasfeeda Qadir
- Plant Tissue Culture Research Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Tareq A Wani
- Plant Tissue Culture Research Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Zahoor A Kaloo
- Plant Tissue Culture Research Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| |
Collapse
|
4
|
Wani BA, Wani SA, Magray JA, Ahmad R, Ganie AH, Nawchoo IA. Habitat suitability, range dynamics, and threat assessment of Swertia petiolata D. Don: a Himalayan endemic medicinally important plant under climate change. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:214. [PMID: 36538137 DOI: 10.1007/s10661-022-10773-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
In the current era of the anthropocene, climate change is one of the main determinants of species redistribution and biodiversity loss. Worryingly, the situation is alarming for endemic and medicinally important plant species with a narrow distributional range. Therefore, it is pivotal to inspect the influence of accelerated climate change on medicinally important threatened and endemic plant species. Using an ensemble approach, the current study aims at modelling the present distribution and predicting the future potential distribution coupled with the threat assessment of Swertia petiolata-a medicinally important endemic plant species in the Himalayan biodiversity hotspot. Our study revealed that under current climatic scenarios, the suitable habitats for the species occur across the western Himalayan region which includes the north-western Indian states (Jammu and Kashmir, Himachal Pradesh, and southern Uttarakhand), northern Pakistan, and north-western Nepal. Also, temperature seasonality (BIO4) and precipitation seasonality (BIO15) are the most significant bioclimatic variables determining the distribution of S. petiolata. Furthermore, the study projected a reduction in the suitable habitats for the species under future changing climatic scenarios with a reduction ranging from - 40.298% under RCP4.5 2050 to - 83.421% under RCP8.5 2070. Most of the habitat reduction will occur in the western Himalayan region. In contrast, some of the currently unsuitable Himalayan regions like northern Uttarakhand will show increasing suitability under climate change scenarios. The current study also revealed that S. petiolata is classified as Near Threatened (NT) following the IUCN criterion B. Hopefully, the present study will provide a robust tool for predicting the cultivation hotspots and devising scientifically effective conservation strategies for this medicinally important plant species in the Himalaya and similar environments elsewhere in the world.
Collapse
Affiliation(s)
- Bilal Ahmad Wani
- Plant Reproductive Biology, Genetic Diversity, and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, J & K, India.
| | - Sajad Ahmad Wani
- Centre for Biodiversity and Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Junaid Ahmad Magray
- Plant Reproductive Biology, Genetic Diversity, and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, J & K, India
| | - Rameez Ahmad
- Centre for Biodiversity and Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Aijaz Hassan Ganie
- Department of Botany, University of Kashmir, Srinagar, 190006, J & K, India
| | - Irshad Ahmad Nawchoo
- Plant Reproductive Biology, Genetic Diversity, and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, J & K, India
| |
Collapse
|
5
|
Ma J, Guo Y, Gao J, Tang H, Xu K, Liu Q, Xu L. Climate Change Drives the Transmission and Spread of Vector-Borne Diseases: An Ecological Perspective. BIOLOGY 2022; 11:1628. [PMID: 36358329 PMCID: PMC9687606 DOI: 10.3390/biology11111628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023]
Abstract
Climate change affects ecosystems and human health in multiple dimensions. With the acceleration of climate change, climate-sensitive vector-borne diseases (VBDs) pose an increasing threat to public health. This paper summaries 10 publications on the impacts of climate change on ecosystems and human health; then it synthesizes the other existing literature to more broadly explain how climate change drives the transmission and spread of VBDs through an ecological perspective. We highlight the multi-dimensional nature of climate change, its interaction with other factors, and the impact of the COVID-19 pandemic on transmission and spread of VBDs, specifically including: (1) the generally nonlinear relationship of local climate (temperature, precipitation and wind) and VBD transmission, with temperature especially exhibiting an n-shape relation; (2) the time-lagged effect of regional climate phenomena (the El Niño-Southern Oscillation and North Atlantic Oscillation) on VBD transmission; (3) the u-shaped effect of extreme climate (heat waves, cold waves, floods, and droughts) on VBD spread; (4) how interactions between non-climatic (land use and human mobility) and climatic factors increase VBD transmission and spread; and (5) that the impact of the COVID-19 pandemic on climate change is debatable, and its impact on VBDs remains uncertain. By exploring the influence of climate change and non-climatic factors on VBD transmission and spread, this paper provides scientific understanding and guidance for their effective prevention and control.
Collapse
Affiliation(s)
- Jian Ma
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Yongman Guo
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Jing Gao
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hanxing Tang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Keqiang Xu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Modeling and Prediction of the Species’ Range of Neurobasis chinensis (Linnaeus, 1758) under Climate Change. BIOLOGY 2022; 11:biology11060868. [PMID: 35741389 PMCID: PMC9220025 DOI: 10.3390/biology11060868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Global climate change is accelerating and modifying the distribution of many extant species. Dragonflies, as a group, inhabit aquatic as well as terrestrial environments and are considered sensitive climate change indicators. In this study, we model and predict the range of a large, tropical damselfly Neurobasis chinensis L. under the last glacial maximum (LGM), the current, and four future warming scenarios. The models show that the species mainly occupies forest ecosystems below 1200 m (preferring 500 to 1200 m) and had two historic core distribution areas in LGM, one of which survived, namely south-central Vietnam. The future scenarios show that the core distribution, high suitable habitats, and even the whole species range of N. chinensis will extend northwards. Abstract Neurobasis chinensis is widely distributed in eastern tropical Asia. Its only congener in China, the N. anderssoni, has not been observed for decades. To protect N. chinensis, it is necessary to understand the ecological properties of its habitats and specie’s range shift under climate change. In the present study, we modeled its potential distribution under one historical, current, and four future scenarios. We evaluated the importance of the factors that shape its distribution and habitats and predicted the historical and current core spatial distributions and their shifting in the future. Two historical core distribution areas were identified: the inland region of the Bay of Bengal and south-central Vietnam. The current potential distribution includes south China, Vietnam, Laos, Thailand, Myanmar, Luzon of Philippines, Malaysia, southwest and northeast India, Sri Lanka, Indonesia (Java, Sumatera), Bangladesh, Nepal, Bhutan, and foothills of the Himalayas, in total, ca. 3.59 × 106 km2. Only one core distribution remained, concentrated in south-central Vietnam. In a warming future, the core distribution, high suitable habitats, and even the whole range of N. chinensis will expand and shift northwards. Currently, N. chinensis mainly resides in forest ecosystems below 1200 m above sea level (preferred 500 m to 1200 m a.s.l.). Annual precipitation, mean temperature of driest quarter, and seasonality of precipitation are important factors shaping the species distribution. Our study provides systematic information on habitats and geographical distribution, which is useful for the conservation of N. chinensis.
Collapse
|