1
|
Adly AS, Egea J, Adly MS, Panayotov I, Adly AS, Malthiery E, Cuisinier F. A novel method to assess photobiomodulation in stimulating regenerative capacity and vascularization in zebrafish. Wound Repair Regen 2025; 33:e13234. [PMID: 39548874 PMCID: PMC11628771 DOI: 10.1111/wrr.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
Photobiomodulation (PBM) therapy is a continuously growing approach to stimulating healing and reducing inflammation and pain. However, its effects in the fields of regenerative medicine and tissue engineering are still under investigation. Studying PBM effects on the regenerative capacity of zebrafish can allow the application of novel clinical approaches where the impact of PBM will be cross-linked with the stem-cell therapeutic approaches. This study was done to establish an in-vivo experimental setup for studying the effects of laser and ultraviolet therapy on zebrafish caudal-fin regeneration and vascularization. Thirty zebrafish were randomly and equally allocated into three groups. The caudal-fins of all zebrafish were amputated under anaesthesia. In the first control group, the caudal-fin was only monitored until fully regenerated. In the second group, the amputated-fin was irradiated with ultraviolet. Finally, in the third group, the amputated-fin was irradiated with laser. Caudal-fin regeneration and vascularization were assessed at days 0, 3, 6, 9, 12, and 15 in all fish. In terms of regeneration, the results indicated that it is possible to discriminate the regenerative effect of laser with the experimental setup as laser therapy showed a statistically significant difference when compared to control-group. It was also found that regenerative stimulation of the group that received ultraviolet therapy showed significant difference when compared to the control group. In terms of vascularization, there was a statistically significant difference in all groups of the study, which may suggest that laser as well as ultraviolet have limited effects in terms of improving vascularization. This study presented a novel, simple and inexpensive method for the assessment of PBM effects on zebrafish. Laser and ultraviolet therapy appeared to act as regenerative stimulators for caudal-fin regeneration of zebrafish. However, laser therapy results were, to some extent, better than ultraviolet therapy. This novel in-vivo design of the experiment led to more rapid and reproducible results than in-vitro experiments.
Collapse
Affiliation(s)
| | - Jean‐Christophe Egea
- LBNUniversity of MontpellierMontpellierFrance
- CSERDCHU MontpellierMontpellierFrance
- UFR odontologieUniversity of MontpellierMontpellierFrance
| | - Mahmoud Sedky Adly
- LBNUniversity of MontpellierMontpellierFrance
- Royal College of Surgeons of EdinburghScotlandUnited Kingdom
| | - Ivan Panayotov
- LBNUniversity of MontpellierMontpellierFrance
- CSERDCHU MontpellierMontpellierFrance
- UFR odontologieUniversity of MontpellierMontpellierFrance
| | | | - Eve Malthiery
- LBNUniversity of MontpellierMontpellierFrance
- Service de Médecine et Chirurgie Bucco‐dentaireCHRU ToursFrance
- UFR OdontologieUniversity of ToursFrance
| | - Frederic Cuisinier
- LBNUniversity of MontpellierMontpellierFrance
- CSERDCHU MontpellierMontpellierFrance
- UFR odontologieUniversity of MontpellierMontpellierFrance
| |
Collapse
|
2
|
Mocho JP. Anaesthesia, analgesia and euthanasia of zebrafish. Zebrafish 2024:427-459. [DOI: 10.1079/9781800629431.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
3
|
Tayyeb JZ, Guru A, Kandaswamy K, Jain D, Manivannan C, Mat KB, Shah MA, Arockiaraj J. Synergistic effect of zinc oxide-cinnamic acid nanoparticles for wound healing management: in vitro and zebrafish model studies. BMC Biotechnol 2024; 24:78. [PMID: 39390421 PMCID: PMC11468080 DOI: 10.1186/s12896-024-00906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Wound infections resulting from pathogen infiltration pose a significant challenge in healthcare settings and everyday life. When the skin barrier is compromised due to injuries, surgeries, or chronic conditions, pathogens such as bacteria, fungi, and viruses can enter the body, leading to infections. These infections can range from mild to severe, causing discomfort, delayed healing, and, in some cases, life-threatening complications. Zinc oxide (ZnO) nanoparticles (NPs) have been widely recognized for their antimicrobial and wound healing properties, while cinnamic acid is known for its antioxidant and anti-inflammatory activities. Based on these properties, the combination of ZnO NPs with cinnamic acid (CA) was hypothesized to have enhanced efficacy in addressing wound infections and promoting healing. This study aimed to synthesize and evaluate the potential of ZnO-CN NPs as a multifunctional agent for wound treatment. ZnO-CN NPs were synthesized and characterized using key techniques to confirm their structure and composition. The antioxidant and anti-inflammatory potential of ZnO-CN NPs was evaluated through standard in vitro assays, demonstrating strong free radical scavenging and inhibition of protein denaturation. The antimicrobial activity of the nanoparticles was tested against common wound pathogens, revealing effective inhibition at a minimal concentration. A zebrafish wound healing model was employed to assess both the safety and therapeutic efficacy of the nanoparticles, showing no toxicity at tested concentrations and facilitating faster wound closure. Additionally, pro-inflammatory cytokine gene expression was analyzed to understand the role of ZnO-CN NPs in wound healing mechanisms. In conclusion, ZnO-CN NPs demonstrate potent antioxidant, anti-inflammatory, and antimicrobial properties, making them promising candidates for wound treatment. Given their multifunctional properties and non-toxicity at tested concentrations, ZnO-CN NPs hold significant potential as a therapeutic agent for clinical wound management, warranting further investigation in human models.
Collapse
Affiliation(s)
- Jehad Zuhair Tayyeb
- Division of Clinical Biochemistry, Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, 23890, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Divya Jain
- Department of Microbiology, School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Chandrakumar Manivannan
- Division of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tiruchirapalli, India
| | - Khairiyah Binti Mat
- Department of Agricultural Sciences, Faculty of Agro‑Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro‑Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Malaysia.
| | - Mohd Asif Shah
- Department of Economics, Kardan University, Parwane Du, Kabul, 1001, Afghanistan.
- Division of Research and Development, Lovely Professional University, Phagwara, 144001, Punjab, India.
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Luong CT, Audira G, Kurnia KA, Hung CH, Hsiao CD. Fish 3D Locomotion app: a user-friendly computer application package for automatic data calculation and endpoint extraction for novel tank behavior in fish. JOURNAL OF FISH BIOLOGY 2024; 105:1086-1108. [PMID: 39007187 DOI: 10.1111/jfb.15860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/11/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
This paper introduces the Fish 3D Locomotion app (F3LA), a Python-based, Graphical User Interface (GUI)-equipped tool designed to automate behavioral endpoint extraction in zebrafish locomotion assays. Building on our previous work, which utilized a specialized aquatic tank with a mirror and a single camera for fish movement tracking in three dimensions, F3LA significantly enhances data processing efficiency. Its accuracy was tested by reanalyzing and comprehensively comparing the calculated data with the previously published data from prior publications. From the comparison results, 90% of endpoints showed a similar statistical difference result. These minor differences were due to the different starting points for the dataset and updated calculation formulas that are implemented in F3LA. In addition, shoaling area or shoaling volume calculations are also included in F3LA as a new feature that can serve as sensitive indicators of social cohesion, group dynamics, or stress responses, offering insights into neuropsychological conditions or the effects of pharmacological interventions. Furthermore, F3LA offers a marked improvement over manual operations, being at least five times faster, while maintaining consistent accuracy as it reduces human-induced errors, ensuring a higher degree of reliability in the results. Finally, the potency of F3LA was tested to evaluate the toxicities of 14 rare earth elements (REEs) to the adult zebrafish behaviors. Based on the results, our findings suggested that each tested REE altered fish behaviors in different patterns and magnitudes to each other. However, among the tested light rare earth elements (LREEs), neodymium was demonstrated to cause more relatively severe behavior alterations than other LREEs, indicated by the statistically higher value of entropy (0.2695 ± 0.04977 (mean with a standard deviation)) than the control group (0.2352 ± 0.05896). Meanwhile, in terms of heavy rare earth elements (HREEs), erbium seemed to lead to more distinct behavior toxicities than other HREEs, which was shown by the statistically lower level of fractal dimension (2.022 ± 0.3412) than the untreated group (2.255 ± 0.1661). Taken together, F3LA's development marks a significant advance in high-throughput toxicological and pharmacological assessments in zebrafish, leveraging three-dimensional locomotion data for a more comprehensive analysis of fish behavior performance, providing a significant contribution to research in various fields.
Collapse
Affiliation(s)
- Cao Thang Luong
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Kevin Adi Kurnia
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Chih-Hsin Hung
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li, Taiwan
| |
Collapse
|
5
|
Siregar P, Hsieh YC, Audira G, Suryanto ME, Macabeo AP, Vasquez RD, Hsiao CD. Toxicity evaluation of neonicotinoids to earthworm (Eisenia fetida) behaviors by a novel locomotion tracking assay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124111. [PMID: 38710360 DOI: 10.1016/j.envpol.2024.124111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Pesticides are substances used for controlling, preventing, and repelling pests in agriculture. Among them, neonicotinoids have become the fastest-growing class of insecticides because of their efficiency in targeting pests. They work by strongly binding to nicotinic acetylcholine receptors (nAChRs) in the central nervous system of insects, leading to receptor blockage, paralysis, and death. Despite their selectivity for insects, these substances may be hazardous to non-target creatures, including earthworms. Although earthworms may be invasive in some regions like north America, they contribute to the development of soil structure, water management, nutrient cycling, pollution remediation, and cultural services, positively impacting the environment, particularly in the soil ecosystem. Thus, this study aimed to develop a novel earthworm behavior assay since behavior is a sensitive marker for toxicity assay, and demonstrated its application in evaluating the toxicity of various neonicotinoids. Here, we exposed Eisenia fetida to 1 and 10 ppb of eight neonicotinoids (acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram pestanal, thiacloprid, thiametoxam, and sulfoxaflor) for 3 days to observe their behavior toxicities. Overall, all of the neonicotinoids decreased their locomotion, showed by a reduction of average speed by 24.94-68.63% and increment in freezing time movement ratio by 1.51-4.25 times, and altered their movement orientation and complexity, indicated by the decrement in the fractal dimension value by 24-70%. Moreover, some of the neonicotinoids, which were acetamiprid, dinotefuran, imidacloprid, nitenpyram, and sulfoxaflor, could even alter their exploratory behaviors, which was shown by the increment in the time spent in the center area value by 6.94-12.99 times. Furthermore, based on the PCA and heatmap clustering results, thiametoxam was found as the neonicotinoid that possessed the least pronounced behavior toxicity effects among the tested pesticides since these neonicotinoid-treated groups in both concentrations were grouped in the same major cluster with the control group. Finally, molecular docking was also conducted to examine neonicotinoids' possible binding mechanism to Acetylcholine Binding Protein (AChBP), which is responsible for neurotransmission. The molecular docking result confirmed that each of the neonicotinoids has a relatively high binding energy with AChBP, with the lowest binding energy was possessed by thiametoxam, which consistent with its relatively low behavior toxicities. Thus, these molecular docking results might hint at the possible mechanism behind the observed behavior alterations. To sum up, the present study demonstrated that all of the neonicotinoids altered the earthworm behaviors which might be due to their ability to bind with some specific neurotransmitters and the current findings give insights into the toxicities of neonicotinoids to the environment, especially animals in a soil ecosystem.
Collapse
Affiliation(s)
- Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Yu-Chen Hsieh
- Agricultural Chemicals Research Institute, Ministry of Agriculture, Taichung City, 413001, Taiwan
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Michael Edbert Suryanto
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Allan Patrick Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila, 1015, Philippines
| | - Ross D Vasquez
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila, 1015, Philippines; Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, 1015, Philippines; The Graduate School, University of Santo Tomas, Manila, 1015, Philippines
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Taoyuan, 320314, Taiwan.
| |
Collapse
|
6
|
Sneddon LU, Schroeder P, Roque A, Finger-Baier K, Fleming A, Tinman S, Collet B. Pain management in zebrafish : Report from a FELASA Working Group. Lab Anim 2024; 58:261-276. [PMID: 38051824 PMCID: PMC11264547 DOI: 10.1177/00236772231198733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 12/07/2023]
Abstract
Empirical evidence suggests fishes meet the criteria for experiencing pain beyond a reasonable doubt and zebrafish are being increasingly used in studies of pain and nociception. Zebrafish are adopted across a wide range of experimental fields and their use is growing particularly in biomedical studies. Many laboratory procedures in zebrafish involve tissue damage and this may give rise to pain. Therefore, this FELASA Working Group reviewed the evidence for pain in zebrafish, the indicators used to assess pain and the impact of a range of drugs with pain-relieving properties. We report that there are several behavioural indicators that can be used to determine pain, including reduced activity, space use and distance travelled. Pain-relieving drugs prevent these responses, and we highlight the dose and administration route. To minimise or avoid pain, several refinements are suggested for common laboratory procedures. Finally, practical suggestions are made for the management and alleviation of pain in laboratory zebrafish, including recommendations for analgesia. Pain management is an important refinement in experimental animal use and so our report has the potential to improve zebrafish welfare during and after invasive procedures in laboratories across the globe.
Collapse
Affiliation(s)
- Lynne U Sneddon
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Paul Schroeder
- Red Kite Veterinary Consultants, 30 Upper High Street, Thame, Oxon, OX9 3EZ, UK
| | | | - Karin Finger-Baier
- Max Planck Institute of Neurobiology (now: Max Planck Institute for Biological Intelligence), Department Genes – Circuits – Behaviour, Martinsried, Germany
| | - Angeleen Fleming
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Simon Tinman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat Gan, Israel
| | | |
Collapse
|
7
|
Audira G, Huang JC, Chen KHC, Kurnia KA, Vasquez RD, Roldan MJM, Lai YH, Hsiao CD, Yen CY. A comprehensive painkillers screening by assessing zebrafish behaviors after caudal fin amputation. Biomed Pharmacother 2023; 168:115641. [PMID: 37806085 DOI: 10.1016/j.biopha.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Recently, the usage of zebrafish for pain studies has increased in the past years, especially due to its robust pain-stimulated behaviors. Fin amputation has been demonstrated to induce a noxious response in zebrafish. However, based on the prior study, although lidocaine, the most used painkiller in zebrafish, has been shown to ameliorate amputated zebrafish behaviors, it still causes some prolonged effects. Therefore, alternative painkillers are always needed to improve the treatment quality of fin-amputated zebrafish. Here, the effects of several analgesics in recovering zebrafish behaviors post-fin amputation were evaluated. From the results, five painkillers were found to have potentially beneficial effects on amputated fish behaviors. Overall, these results aligned with their binding energy level to target proteins of COX-1 and COX-2. Later, based on their sub-chronic effects on zebrafish survivability, indomethacin, and diclofenac were further studied. This combination showed a prominent effect in recovering zebrafish behaviors when administered orally or through waterborne exposure, even with lower concentrations. Next, based on the ELISA in zebrafish brain tissue, although some changes were found in the treated group, no statistical differences were observed in most of the tested biomarkers. However, since heatmap clustering showed a similar pattern between biochemical and behavior endpoints, the minor changes in each biomarker may be sufficient in changing the fish behaviors.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Kelvin H-C Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Kevin Adi Kurnia
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan; Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Ross D Vasquez
- Department of Pharmacy, Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines
| | - Marri Jmelou M Roldan
- Faculty of Pharmacy, The Graduate School, University of Santo Tomas, Manila 1008, Philippines
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Center for Nanotechnology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Taoyuan 320314, Taiwan.
| | - Cheng-Yo Yen
- Department of Orthopedics, E-Da Cancer Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, No.1, E-Da Road, Yan-Chau District, 824, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Paniccia D, Padovani L, Graziani G, Lugni C, Piva R. How Free Swimming Fosters the Locomotion of a Purely Oscillating Fish-like Body. Biomimetics (Basel) 2023; 8:401. [PMID: 37754152 PMCID: PMC10526200 DOI: 10.3390/biomimetics8050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/28/2023] Open
Abstract
The recoil motions in free swimming, given by lateral and angular rigid motions due to the interaction with the surrounding water, are of great importance for a correct evaluation of both the forward locomotion speed and efficiency of a fish-like body. Their contribution is essential for calculating the actual movements of the body rear end whose prominent influence on the generation of the proper body deformation was established a long time ago. In particular, the recoil motions are found here to promote a dramatic improvement of the performance when damaged fishes, namely for a partial functionality of the tail or even for its complete loss, are considered. In fact, the body deformation, which turns out to become oscillating and symmetric in the extreme case, is shown to recover in the water frame a kind of undulation leading to a certain locomotion speed though at the expense of a large energy consumption. There has been a deep interest in the subject since the infancy of swimming studies, and a revival has recently arisen for biomimetic applications to robotic fish-like bodies. We intend here to apply a theoretical impulse model to the oscillating fish in free swimming as a suitable test case to strengthen our belief in the beneficial effects of the recoil motions. At the same time, we intend to exploit the linearity of the model to detect from the numerical simulations the intrinsic physical reasons related to added mass and vorticity release behind the experimental observations.
Collapse
Affiliation(s)
- Damiano Paniccia
- Department of Mechanical and Aerospace Engineering, Sapienza University, 00184 Rome, Italy; (D.P.); (L.P.); (R.P.)
- Leonardo S.p.A., Piazza Monte Grappa 4, 00195 Rome, Italy
| | - Luca Padovani
- Department of Mechanical and Aerospace Engineering, Sapienza University, 00184 Rome, Italy; (D.P.); (L.P.); (R.P.)
- CNR-INM, Marine Technology Research Institute, 00128 Rome, Italy;
| | - Giorgio Graziani
- Department of Mechanical and Aerospace Engineering, Sapienza University, 00184 Rome, Italy; (D.P.); (L.P.); (R.P.)
| | - Claudio Lugni
- CNR-INM, Marine Technology Research Institute, 00128 Rome, Italy;
- Marine Technology Department, NTNU, NO-7491 Trondheim, Norway
| | - Renzo Piva
- Department of Mechanical and Aerospace Engineering, Sapienza University, 00184 Rome, Italy; (D.P.); (L.P.); (R.P.)
| |
Collapse
|
9
|
Eguiraun H, Martinez I. Entropy and Fractal Techniques for Monitoring Fish Behaviour and Welfare in Aquacultural Precision Fish Farming-A Review. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25040559. [PMID: 37190348 PMCID: PMC10137457 DOI: 10.3390/e25040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
In a non-linear system, such as a biological system, the change of the output (e.g., behaviour) is not proportional to the change of the input (e.g., exposure to stressors). In addition, biological systems also change over time, i.e., they are dynamic. Non-linear dynamical analyses of biological systems have revealed hidden structures and patterns of behaviour that are not discernible by classical methods. Entropy analyses can quantify their degree of predictability and the directionality of individual interactions, while fractal dimension (FD) analyses can expose patterns of behaviour within apparently random ones. The incorporation of these techniques into the architecture of precision fish farming (PFF) and intelligent aquaculture (IA) is becoming increasingly necessary to understand and predict the evolution of the status of farmed fish. This review summarizes recent works on the application of entropy and FD techniques to selected individual and collective fish behaviours influenced by the number of fish, tagging, pain, preying/feed search, fear/anxiety (and its modulation) and positive emotional contagion (the social contagion of positive emotions). Furthermore, it presents an investigation of collective and individual interactions in shoals, an exposure of the dynamics of inter-individual relationships and hierarchies, and the identification of individuals in groups. While most of the works have been carried out using model species, we believe that they have clear applications in PFF. The review ends by describing some of the major challenges in the field, two of which are, unsurprisingly, the acquisition of high-quality, reliable raw data and the construction of large, reliable databases of non-linear behavioural data for different species and farming conditions.
Collapse
Affiliation(s)
- Harkaitz Eguiraun
- Department of Graphic Design & Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country UPV/EHU, 48013 Bilbao, Bizkaia, Spain
- Research Center for Experimental Marine Biology and Biotechnology-Plentziako Itsas Estazioa (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), 48620 Plentzia, Bizkaia, Spain
| | - Iciar Martinez
- Research Center for Experimental Marine Biology and Biotechnology-Plentziako Itsas Estazioa (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), 48620 Plentzia, Bizkaia, Spain
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Bizkaia, Spain
| |
Collapse
|
10
|
Suryanto ME, Yang CC, Audira G, Vasquez RD, Roldan MJM, Ger TR, Hsiao CD. Evaluation of Locomotion Complexity in Zebrafish after Exposure to Twenty Antibiotics by Fractal Dimension and Entropy Analysis. Antibiotics (Basel) 2022; 11:1059. [PMID: 36009928 PMCID: PMC9404773 DOI: 10.3390/antibiotics11081059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Antibiotics are extensively used in aquaculture to prevent bacterial infection and the spread of diseases. Some antibiotics have a relatively longer half-life in water and may induce some adverse effects on the targeted fish species. This study analyzed the potential adverse effects of antibiotics in zebrafish at the behavioral level by a phenomic approach. We conducted three-dimensional (3D) locomotion tracking for adult zebrafish after acute exposure to twenty different antibiotics at a concentration of 100 ppb for 10 days. Their locomotor complexity was analyzed and compared by fractal dimension and permutation entropy analysis. The dimensionality reduction method was performed by combining the data gathered from behavioral endpoints alteration. Principal component and hierarchical analysis conclude that three antibiotics: amoxicillin, trimethoprim, and tylosin, displayed unique characteristics. The effects of these three antibiotics at lower concentrations (1 and 10 ppb) were observed in a follow-up study. Based on the results, these antibiotics can trigger several behavioral alterations in adult zebrafish, even in low doses. Significant changes in locomotor behavioral activity, such as total distance activity, average speed, rapid movement time, angular velocity, time in top/bottom duration, and meandering movement are highly related to neurological motor impairments, anxiety levels, and stress responses were observed. This study provides evidence based on an in vivo experiment to support the idea that the usage of some antibiotics should be carefully addressed since they can induce a significant effect of behavioral alterations in fish.
Collapse
Affiliation(s)
- Michael Edbert Suryanto
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Chun-Chuen Yang
- Department of Physics, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Physics, National Central University, Chung-Li 32001, Taiwan
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Ross D. Vasquez
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines
- The Graduate School, University of Santo Tomas, Manila 1015, Philippines
| | | | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| |
Collapse
|