1
|
Getahun A, Alemu A, Nida H, Woldesemayat AA. Multi-locus genome-wide association mapping for major agronomic and yield-related traits in sorghum (Sorghum bicolor (L.) moench) landraces. BMC Genomics 2025; 26:304. [PMID: 40155810 PMCID: PMC11951778 DOI: 10.1186/s12864-025-11458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/06/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Sorghum is a vital cereal crop for over 750 million people, ranking 5th globally. It has multiple purposes, including food, feed, and biofuels, and is essential in Ethiopia, which has a rich genetic diversity of various agroecological zones. OBJECTIVE Explore marker-trait associations (MTAs) to identify quantitative trait nucleotides (QTNs) and new candidate genes associated with agronomic and yield contributing traits in Ethiopian sorghum landraces using multi-locus GWAS models to assist the genomic-assisted breeding strategies. METHOD This study investigates the genetic basis of agronomic traits in Ethiopian sorghum landraces through multi-locus Genome-Wide Association Studies (ML-GWAS). 216 landraces, improved varieties, and check cultivars were obtained from the Ethiopian Biodiversity Institute and the National Sorghum Improvement Program for this study. The experiment was conducted over two cropping seasons, employing an α-lattice design for phenotyping key traits such as days to flowering, days to maturity, plant height, seed number per plant, grain yield, and thousand seed weight. A mixed linear model (MLM) was used to analyze the phenotypic data and estimate the genetic parameters including variances and the broad sense heritability. GBS with the ApeKI restriction enzyme provided 50,165 high-quality SNP markers. The six ML-GWAS models identified significant QTNs with a LOD score threshold value of ≥ 4.0. The analysis revealed major QTNs associated with traits across multiple chromosomes, supported by a stringent filtering criterion that ensured reliability. Co-localization with known QTLs was explored using the Sorghum QTL Atlas database and candidate genes within significant QTN regions, providing the genetic architecture influencing agronomic performance were identified via the Phytozome platform using the biomaRt package. RESULT Pearson correlation analysis revealed significant associations among most traits, with p-values less than 0.0001, except for grain yield per plant which showed lower correlations with other traits. Genetic variability analysis indicated that days to flowering exhibited high heritability (0.7) and genetic advance (19.6%) as percent of mean, suggesting strong genetic control, while grain yield displayed extremely low h2 (0.003). A total of 351,692 SNP markers were identified across 10 sorghum chromosomes from 216 Ethiopian sorghum landraces, and we have been refining this to 50,165 filtered SNPs. Manhattan plots indicated significant marker-trait associations (MTAs) across multiple chromosomes, particularly for days to flowering and plant height. Significant QTNs were associated with key traits including flowering time, plant height, and grain yield. ML-GWAS identified 176 QTNs with varying LOD scores and phenotypic effects. Multiple genes linked to these QTNs highlight the complexity of genetic interactions of studied traits with 36 unique and 12 major QTNs. Notable SNP markers were concentrated on chromosomes 1, 2, and 3, reinforcing the importance of these regions for breeding efforts. Candidate gene analysis revealed key genes regulating flowering time, stress response, and yield traits, which could serve as targets for genetic enhancement. In our study, key candidate genes have been successfully identified, these are regulating flowering time, maturity, and stress resilience. Genes such as Sobic.001G196700 and Sobic.002G183400 are identified as critical regulators of floral development. The stress-responsive gene Sobic.005G176100 (a mannose-6-phosphate isomerase), emphasizes the importance of resilience in sorghum cultivation under adverse conditions. Additionally, Sobic.003G324400 and Sobic.004G178300 are essential for regulating plant height and seed weight, making them valuable for yield enhancement breeding programs. CONCLUSION This study enhances our understanding of the genetic diversity of Ethiopian sorghum landraces, crucial for breeding programs. It identifies key QTNs and candidate genes associated with important agronomic traits, offering insights for marker-assisted and genomic-assisted breeding. The ML-GWAS models highlight the genetic complexity of flowering time and grain yield traits, emphasizing the need for targeted breeding efforts to maximize sorghum productivity.
Collapse
Affiliation(s)
- Addisu Getahun
- College of Applied and Natural Sciences (CANS), Department of Biotechnology, Addis Ababa Science and Technology University (AASTU), Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Center of Excellence, AASTU, Addis Ababa, Ethiopia
- College of Agriculture, Food and Climate Sciences, Department of Plant Sciences, Injibara University, Injibara, Ethiopia
| | - Admas Alemu
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Almas Allé 8, Lomma, Uppsala, 750 07, Sweden
| | - Habte Nida
- Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Adugna Abdi Woldesemayat
- College of Applied and Natural Sciences (CANS), Department of Biotechnology, Addis Ababa Science and Technology University (AASTU), Addis Ababa, Ethiopia.
- Biotechnology and Bioprocess Center of Excellence, AASTU, Addis Ababa, Ethiopia.
| |
Collapse
|
2
|
Nguyen TC, Tran HA, Lee JD, Seo HS, Jo H, Song JT. Genetic Control of Tolerance to Drought Stress in Wild Soybean ( Glycine soja) at the Vegetative and the Germination Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:1894. [PMID: 39065421 PMCID: PMC11281237 DOI: 10.3390/plants13141894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Drought stress, which is becoming more prevalent due to climate change, is a significant abiotic factor that adversely impacts crop production and yield stability. Cultivated soybean (Glycine max), a versatile crop for humans and animals, exhibits sensitivity to drought, resulting in reduced growth and development under drought conditions. However, few genetic studies have assessed wild soybean's (Glycine soja) response to drought stress. In this work, we conducted a genome-wide association study (GWAS) and analysis of wild soybean accessions to identify loci responsible for drought tolerance at the vegetative (n = 187) and the germination stages (n = 135) using the available resequencing data. The GWAS analysis of the leaf wilting score (LWS) identified eight single-nucleotide polymorphisms (SNPs) on chromosomes 10, 11, and 19. Of these, wild soybeans with both SNPs on chromosomes 10 (adenine) and 11 (thymine) produced lower LWS, indicating that these SNPs have an important role in the genetic effect on LWS for drought tolerance at the vegetative stage. At the germination stage, nine SNPs associated with five phenotypic measurements were identified on chromosomes 6, 9, 10, 13, 16, and 17, and the genomic regions identified at the germination stage were different from those identified for the LWS, supporting our previous finding that there may not be a robust correlation between the genes influencing phenotypes at the germination and vegetative stages. This research will benefit marker-assisted breeding programs aimed at enhancing drought tolerance in soybeans.
Collapse
Affiliation(s)
- Thi Cuc Nguyen
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (T.C.N.); (H.A.T.); (J.-D.L.)
| | - Hai Anh Tran
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (T.C.N.); (H.A.T.); (J.-D.L.)
| | - Jeong-Dong Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (T.C.N.); (H.A.T.); (J.-D.L.)
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hyun Jo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (T.C.N.); (H.A.T.); (J.-D.L.)
| | - Jong Tae Song
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (T.C.N.); (H.A.T.); (J.-D.L.)
| |
Collapse
|
3
|
Chen Y, Liu Z, Han D, Yang Q, Li C, Shi X, Zhang M, Yang C, Qiu L, Jia H, Wang S, Lu W, Ma Q, Yan L. Cold tolerance SNPs and candidate gene mining in the soybean germination stage based on genome-wide association analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:178. [PMID: 38976061 DOI: 10.1007/s00122-024-04685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
KEY MESSAGE Three QTLs associated with low-temperature tolerance were identified by genome-wide association analysis, and 15 candidate genes were identified by haplotype analysis and gene expression analyses. Low temperature is a critical factor affecting the geographical distribution, growth, development, and yield of soybeans, with cold stress during seed germination leading to substantial productivity loss. In this study, an association panel comprising 260 soybean accessions was evaluated for four germination traits and four cold tolerance index traits, revealing extensive variation in cold tolerance. Genome-wide association study (GWAS) identified 10 quantitative trait nucleotides (QTNs) associated with cold tolerance, utilizing 30,799 single nucleotide polymorphisms (SNPs) and four GWAS models. Linkage disequilibrium (LD) analysis positioned these QTNs within three cold-tolerance quantitative trait loci (QTL) and, with QTL19-1, was positioned by three multi-locus models, underscoring its importance as a key QTL. Integrative haplotype analysis, supplemented by transcriptome analysis, uncovered 15 candidate genes. The haplotypes within the genes Glyma.18G044200, Glyma.18G044300, Glyma.18G044900, Glyma.18G045100, Glyma.19G222500, and Glyma.19G222600 exhibited significant phenotypic variations, with differential expression in materials with varying cold tolerance. The QTNs and candidate genes identified in this study offer substantial potential for marker-assisted selection and gene editing in breeding cold-tolerant soybeans, providing valuable insights into the genetic mechanisms underlying cold tolerance during soybean germination.
Collapse
Affiliation(s)
- Yuehan Chen
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Zhi Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Dezhi Han
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, 164300, China
| | - Qing Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Chenhui Li
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Xiaolei Shi
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Mengchen Zhang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Germplasm and Biotechnology (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongchang Jia
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, 164300, China
| | - Shu Wang
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, 164300, China
| | - Wencheng Lu
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, 164300, China.
| | - Qian Ma
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Long Yan
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China.
| |
Collapse
|
4
|
Jia Q, Zhou M, Xiong Y, Wang J, Xu D, Zhang H, Liu X, Zhang W, Wang Q, Sun X, Chen H. Development of KASP markers assisted with soybean drought tolerance in the germination stage based on GWAS. FRONTIERS IN PLANT SCIENCE 2024; 15:1352379. [PMID: 38425800 PMCID: PMC10902137 DOI: 10.3389/fpls.2024.1352379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Soybean [Glycine max(L.)Merr.] is a leading oil-bearing crop and cultivated globally over a vast scale. The agricultural landscape in China faces a formidable challenge with drought significantly impacting soybean production. In this study, we treated a natural population of 264 Chinese soybean accessions using 15% PEG-6000 and used GR, GE, GI, RGR, RGE, RGI and ASFV as evaluation index. Using the ASFV, we screened 17 strong drought-tolerant soybean germplasm in the germination stage. Leveraging 2,597,425 high-density SNP markers, we conducted Genome-Wide Association Studies (GWAS) and identified 92 SNPs and 9 candidate genes significantly associated with drought tolerance. Furthermore, we developed two KASP markers for S14_5147797 and S18_53902767, which closely linked to drought tolerance. This research not only enriches the pool of soybean germplasm resources but also establishes a robust foundation for the molecular breeding of drought tolerance soybean varieties.
Collapse
Affiliation(s)
- Qianru Jia
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Miaomiao Zhou
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yawen Xiong
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Junyan Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Donghe Xu
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Hongmei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaoqing Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiong Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Sun
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Zhongshan Biological Breeding Laboratory (ZSBBL), Nanjing, China
| |
Collapse
|
5
|
Haidar S, Lackey S, Charette M, Yoosefzadeh-Najafabadi M, Gahagan AC, Hotte T, Belzile F, Rajcan I, Golshani A, Morrison MJ, Cober ER, Samanfar B. Genome-wide analysis of cold imbibition stress in soybean, Glycine max. FRONTIERS IN PLANT SCIENCE 2023; 14:1221644. [PMID: 37670866 PMCID: PMC10476531 DOI: 10.3389/fpls.2023.1221644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/17/2023] [Indexed: 09/07/2023]
Abstract
In Canada, the length of the frost-free season necessitates planting crops as early as possible to ensure that the plants have enough time to reach full maturity before they are harvested. Early planting carries inherent risks of cold water imbibition (specifically less than 4°C) affecting seed germination. A marker dataset developed for a previously identified Canadian soybean GWAS panel was leveraged to investigate the effect of cold water imbibition on germination. Seed from a panel of 137 soybean elite cultivars, grown in the field at Ottawa, ON, over three years, were placed on filter paper in petri dishes and allowed to imbibe water for 16 hours at either 4°C or 20°C prior to being transferred to a constant 20°C. Observations on seed germination, defined as the presence of a 1 cm radicle, were done from day two to seven. A three-parameter exponential rise to a maximum equation (3PERM) was fitted to estimate germination, time to the one-half maximum germination, and germination uniformity for each cultivar. Genotype-by-sequencing was used to identify SNPs in 137 soybean lines, and using genome-wide association studies (GWAS - rMVP R package, with GLM, MLM, and FarmCPU as methods), haplotype block analysis, and assumed linkage blocks of ±100 kbp, a threshold for significance was established using the qvalue package in R, and five significant SNPs were identified on chromosomes 1, 3, 4, 6, and 13 for maximum germination after cold water imbibition. Percent of phenotypic variance explained (PVE) and allele substitution effect (ASE) eliminated two of the five candidate SNPs, leaving three QTL regions on chromosomes 3, 6, and 13 (Chr3-3419152, Chr6-5098454, and Chr13-29649544). Based on the gene ontology (GO) enrichment analysis, 14 candidate genes whose function is predicted to include germination and cold tolerance related pathways were identified as candidate genes. The identified QTLs can be used to select future soybean cultivars tolerant to cold water imbibition and mitigate risks associated with early soybean planting.
Collapse
Affiliation(s)
- Siwar Haidar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Simon Lackey
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Martin Charette
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | | | - A. Claire Gahagan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Thomas Hotte
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Francois Belzile
- Department of Phytology, Institut de Biologie Intégrative et des Systèmes (IBIS), Université de Laval, Quebec City, QC, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Ashkan Golshani
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Malcolm J. Morrison
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
6
|
Xing X, Cao C, Li S, Wang H, Xu Z, Qi Y, Tong F, Jiang H, Wang X. α-naphthaleneacetic acid positively regulates soybean seed germination and seedling establishment by increasing antioxidant capacity, triacylglycerol mobilization and sucrose transport under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107890. [PMID: 37454467 DOI: 10.1016/j.plaphy.2023.107890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/15/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Drought stress is an important constraint for the germination of soybean (Glycine max [L.] Merr.) seeds and seedling establishment. A pot experiment was conducted to determine the effects of priming soybean seeds with 5 μM α-naphthaleneacetic acid (NAA) and the mechanism responsible for the induced tolerance of drought stress (soil relative water content of 55%). NAA priming inhibited drought-induced oxidative damage in seeds, and further analysis indicated that it induced an early spike in hydrogen peroxide content by the upregulation of abscisic acid-dependent GmRbohC2, resulting in an enhancement of antioxidant capacity. Moreover, NAA priming also improved the hydrolysis of triacylglycerol (TAG) to sucrose in stressed cotyledons by causing a 2- to 5-fold increase in the transcript levels of GmSDP1, GmACX2, GmMFP2, GmICL, GmMLS, GmGLI1, GmPCK1, GmFBPase1, GmSPS1 and GmSPS2. Consistently, it upregulated the expression levels of GmSUT1, GmCWINV1 and GmMST2 under drought stress, thus enhancing the transport of sucrose from cotyledons to embryonic axes, providing carbon skeletons and energy for axis growth. The seed germination percentage increased by 208.1% at 21 h after sowing, and seedling establishment percentage increased by 47.8% at 14 days after sowing. Collectively, the positive effects of NAA priming on seed germination and seedling establishment can be attributed to enhanced antioxidant ability in seeds, TAG mobilization in cotyledons and sucrose transport from cotyledons to embryonic axes under drought stress.
Collapse
Affiliation(s)
- Xinghua Xing
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Chunxin Cao
- Jinhua Academy of Agricultural Sciences, Jinhua, 321017, China
| | - Simeng Li
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Haorang Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Zejun Xu
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Yujun Qi
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Fei Tong
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Haidong Jiang
- Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China.
| |
Collapse
|
7
|
Wang L, Tanveer M. Editorial to the Special Issue "Eco-Physiological and Molecular Basis of Stress Tolerance in Plants". BIOLOGY 2023; 12:biology12030485. [PMID: 36979176 PMCID: PMC10045121 DOI: 10.3390/biology12030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Farmers are currently facing the challenge of producing sufficient crop yield [...].
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Mohsin Tanveer
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|