1
|
Biel N, Rashid F, Natua S, Wang TY, Chou TF, Nguyen TVP, Golding I, Kalsotra A, Sokac AM. Reducing Cofilin dosage makes embryos resilient to heat stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.631102. [PMID: 39803506 PMCID: PMC11722379 DOI: 10.1101/2025.01.02.631102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
In addition to regulating the actin cytoskeleton, Cofilin also senses and responds to environmental stress. Cofilin can promote cell survival or death depending on context. Yet, many aspects of Cofilin's role in survival need clarification. Here, we show that exposing early Drosophila embryos to mild heat stress (32°C) induces a Cofilin-mediated Actin Stress Response and upregulation of heat- and ER- stress response genes. However, these responses do not alleviate the negative impacts of heat exposure. Instead, heat stressed embryos show downregulation of hundreds of developmental genes, including determinants of the embryonic body plan, and are less likely to hatch as larvae and adults. Remarkably, reducing Cofilin dosage blunts induction of all stress response pathways, mitigates downregulation of developmental genes, and completely rescues survival. Thus, Cofilin intersects with multiple stress response pathways, and modulates the transcriptomic response to heat stress. Strikingly, Cofilin knockdown emerges as a potent pro-survival manipulation for embryos.
Collapse
Affiliation(s)
- Natalie Biel
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Faizan Rashid
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- These authors contributed equally
| | - Subhashis Natua
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- These authors contributed equally
| | - Ting-Yu Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tsui-Fen Chou
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Present address: Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Anna Marie Sokac
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Lead contact
| |
Collapse
|
2
|
Chen Y, Pang J, Chen Y, Liang Y, Zhang Z, Wang Z. Diallyl trisulfide regulates PGK1/Nrf2 expression and reduces inflammation to alleviate neurological damage in mice after traumatic brain injury. Brain Res 2024; 1843:149116. [PMID: 38977238 DOI: 10.1016/j.brainres.2024.149116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Diallyl trisulfide (DATS) has a direct antioxidant capacity and emerges as a promising neuroprotective agent. This study was designed to investigate the role of DATS in traumatic brain injury (TBI). METHODS TBI mouse models were established using the controlled cortical impact, followed by DATS administration. The effects of DATS on neurological deficit, brain damage, inflammation and phosphoglycerate kinase 1 (PGK1) expression were detected using mNSS test, histological analysis, TUNEL assay, enzyme-linked immunosorbent assay and immunofluorescence. PC12 cells were subjected to H2O2-induced oxidative injury after pre-treatment with DATS, followed by cell counting kit-8 assay, flow cytometry and ROS production detection. Apoptosis-related proteins and the PGK1/nuclear factor erythroid-2 related factor 2 (Nrf2) pathway were examined using Western blot. RESULTS DATS ameliorated the cerebral cortex damage, neurological dysfunction and apoptosis, as well as decreased PGK1 expression and expressions of pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) in mice after TBI. DATS also enhanced viability, blocked apoptosis and inhibited ROS production in H2O2-induced PC12 cells. DATS downregulated Cleaved-Caspase3, Bax and PGK1 levels, and upregulated Bcl-2 and Nrf2 levels in TBI mouse models and the injured cells. CONCLUSION DATS regulates PGK1/Nrf2 expression and inflammation to alleviate neurological damage in mice after TBI.
Collapse
Affiliation(s)
- Yafei Chen
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Jianliang Pang
- Department of Vascular Surgery, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital) , PR China
| | - Yulong Chen
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Ying Liang
- Injection Room, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Zhengbo Zhang
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Zhangquan Wang
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China.
| |
Collapse
|
3
|
Steinmaurer A, Riedl C, König T, Testa G, Köck U, Bauer J, Lassmann H, Höftberger R, Berger T, Wimmer I, Hametner S. The relation between BTK expression and iron accumulation of myeloid cells in multiple sclerosis. Brain Pathol 2024; 34:e13240. [PMID: 38254312 PMCID: PMC11328345 DOI: 10.1111/bpa.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Activation of Bruton's tyrosine kinase (BTK) has been shown to play a crucial role in the proinflammatory response of B cells and myeloid cells upon engagement with B cell, Fc, Toll-like receptor, and distinct chemokine receptors. Previous reports suggest BTK actively contributes to the pathogenesis of multiple sclerosis (MS). The BTK inhibitor Evobrutinib has been shown to reduce the numbers of gadolinium-enhancing lesions and relapses in relapsing-remitting MS patients. In vitro, BTK inhibition resulted in reduced phagocytic activity and modulated BTK-dependent inflammatory signaling of microglia and macrophages. Here, we investigated the protein expression of BTK and CD68 as well as iron accumulation in postmortem control (n = 10) and MS (n = 23) brain tissue, focusing on microglia and macrophages. MS cases encompassed active, chronic active, and inactive lesions. BTK+ and iron+ cells positively correlated across all regions of interests and, along with CD68, revealed highest numbers in the center of active and at the rim of chronic active lesions. We then studied the effect of BTK inhibition in the human immortalized microglia-like HMC3 cell line in vitro. In particular, we loaded HMC3 cells with iron-dextran and subsequently administered the BTK inhibitor Evobrutinib. Iron treatment alone induced a proinflammatory phenotype and increased the expression of iron importers as well as the intracellular iron storage protein ferritin light chain (FTL). BTK inhibition of iron-laden cells dampened the expression of microglia-related inflammatory genes as well as iron-importers, whereas the iron-exporter ferroportin was upregulated. Our data suggest that BTK inhibition not only dampens the proinflammatory response but also reduces iron import and storage in activated microglia and macrophages with possible implications on microglial iron accumulation in chronic active lesions in MS.
Collapse
Affiliation(s)
- Anja Steinmaurer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Christian Riedl
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| | - Theresa König
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Giulia Testa
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Köck
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Simon Hametner
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Xing J, Wang Y, Peng A, Li J, Niu X, Zhang K. The role of actin cytoskeleton CFL1 and ADF/cofilin superfamily in inflammatory response. Front Mol Biosci 2024; 11:1408287. [PMID: 39114368 PMCID: PMC11303188 DOI: 10.3389/fmolb.2024.1408287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Actin remodeling proteins are important in immune diseases and regulate cell cytoskeletal responses. These responses play a pivotal role in maintaining the delicate balance of biological events, protecting against acute or chronic inflammation in a range of diseases. Cofilin (CFL) and actin depolymerization factor (ADF) are potent actin-binding proteins that cut and depolymerize actin filaments to generate actin cytoskeleton dynamics. Although the molecular mechanism by which actin induces actin cytoskeletal reconstitution has been studied for decades, the regulation of actin in the inflammatory process has only recently become apparent. In this paper, the functions of the actin cytoskeleton and ADF/cofilin superfamily members are briefly introduced, and then focus on the role of CFL1 in inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan Central Hospital, Dong San Dao Xiang, Taiyuan, China
| |
Collapse
|
5
|
Wang X, Mao Y, Liang T, Li Z, Li X, Zhu X, Cao F, Zhang J. Nervonic acid suppresses MPTP-induced Parkinson's disease in an adult zebrafish model by regulating the MAPK/NF-κB signaling pathway, inflammation, apoptosis, and oxidative stress. FOOD BIOSCI 2024; 59:103777. [DOI: 10.1016/j.fbio.2024.103777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Silvestro S, Raffaele I, Quartarone A, Mazzon E. Innovative Insights into Traumatic Brain Injuries: Biomarkers and New Pharmacological Targets. Int J Mol Sci 2024; 25:2372. [PMID: 38397046 PMCID: PMC10889179 DOI: 10.3390/ijms25042372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
A traumatic brain injury (TBI) is a major health issue affecting many people across the world, causing significant morbidity and mortality. TBIs often have long-lasting effects, disrupting daily life and functionality. They cause two types of damage to the brain: primary and secondary. Secondary damage is particularly critical as it involves complex processes unfolding after the initial injury. These processes can lead to cell damage and death in the brain. Understanding how these processes damage the brain is crucial for finding new treatments. This review examines a wide range of literature from 2021 to 2023, focusing on biomarkers and molecular mechanisms in TBIs to pinpoint therapeutic advancements. Baseline levels of biomarkers, including neurofilament light chain (NF-L), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), Tau, and glial fibrillary acidic protein (GFAP) in TBI, have demonstrated prognostic value for cognitive outcomes, laying the groundwork for personalized treatment strategies. In terms of pharmacological progress, the most promising approaches currently target neuroinflammation, oxidative stress, and apoptotic mechanisms. Agents that can modulate these pathways offer the potential to reduce a TBI's impact and aid in neurological rehabilitation. Future research is poised to refine these therapeutic approaches, potentially revolutionizing TBI treatment.
Collapse
Affiliation(s)
| | | | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, SS 113, Contrada Casazza, 98124 Messina, Italy; (S.S.); (I.R.); (A.Q.)
| |
Collapse
|
7
|
Al Yacoub ON, Zhang Y, Patankar PS, Standifer KM. Traumatic Brain Injury Induces Nociceptin/Orphanin FQ and Nociceptin Opioid Peptide Receptor Expression within 24 Hours. Int J Mol Sci 2024; 25:1658. [PMID: 38338936 PMCID: PMC10855772 DOI: 10.3390/ijms25031658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and disability around the world, for which no treatment has been found. Nociceptin/Orphanin FQ (N/OFQ) and the nociceptin opioid peptide (NOP) receptor are rapidly increased in response to fluid percussion, stab injury, and controlled cortical impact (CCI) TBI. TBI-induced upregulation of N/OFQ contributes to cerebrovascular impairment, increased excitotoxicity, and neurobehavioral deficits. Our objective was to identify changes in N/OFQ and NOP receptor peptide, protein, and mRNA relative to the expression of injury markers and extracellular regulated kinase (ERK) 24 h following mild (mTBI) and moderate TBI (ModTBI) in wildtype (WT) and NOP receptor-knockout (KO) rats. N/OFQ was quantified by radioimmunoassay, mRNA expression was assessed using real-time PCR and protein levels were determined by immunoblot analysis. This study revealed increased N/OFQ mRNA and peptide levels in the CSF and ipsilateral tissue of WT, but not KO, rats 24 h post-TBI; NOP receptor mRNA increased after ModTBI. Cofilin-1 activation increased in the brain tissue of WT but not KO rats, ERK activation increased in all rats following ModTBI; no changes in injury marker levels were noted in brain tissue at this time. In conclusion, this study elucidates transcriptional and translational changes in the N/OFQ-NOP receptor system relative to TBI-induced neurological deficits and initiation of signaling cascades that support the investigation of the NOP receptor as a therapeutic target for TBI.
Collapse
Affiliation(s)
| | | | | | - Kelly M. Standifer
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (O.N.A.Y.); (Y.Z.); (P.S.P.)
| |
Collapse
|
8
|
Shehjar F, Almarghalani DA, Mahajan R, Hasan SAM, Shah ZA. The Multifaceted Role of Cofilin in Neurodegeneration and Stroke: Insights into Pathogenesis and Targeting as a Therapy. Cells 2024; 13:188. [PMID: 38247879 PMCID: PMC10814918 DOI: 10.3390/cells13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
This comprehensive review explores the complex role of cofilin, an actin-binding protein, across various neurodegenerative diseases (Alzheimer's, Parkinson's, schizophrenia, amyotrophic lateral sclerosis (ALS), Huntington's) and stroke. Cofilin is an essential protein in cytoskeletal dynamics, and any dysregulation could lead to potentially serious complications. Cofilin's involvement is underscored by its impact on pathological hallmarks like Aβ plaques and α-synuclein aggregates, triggering synaptic dysfunction, dendritic spine loss, and impaired neuronal plasticity, leading to cognitive decline. In Parkinson's disease, cofilin collaborates with α-synuclein, exacerbating neurotoxicity and impairing mitochondrial and axonal function. ALS and frontotemporal dementia showcase cofilin's association with genetic factors like C9ORF72, affecting actin dynamics and contributing to neurotoxicity. Huntington's disease brings cofilin into focus by impairing microglial migration and influencing synaptic plasticity through AMPA receptor regulation. Alzheimer's, Parkinson's, and schizophrenia exhibit 14-3-3 proteins in cofilin dysregulation as a shared pathological mechanism. In the case of stroke, cofilin takes center stage, mediating neurotoxicity and neuronal cell death. Notably, there is a potential overlap in the pathologies and involvement of cofilin in various diseases. In this context, referencing cofilin dysfunction could provide valuable insights into the common pathologies associated with the aforementioned conditions. Moreover, this review explores promising therapeutic interventions, including cofilin inhibitors and gene therapy, demonstrating efficacy in preclinical models. Challenges in inhibitor development, brain delivery, tissue/cell specificity, and long-term safety are acknowledged, emphasizing the need for precision drug therapy. The call to action involves collaborative research, biomarker identification, and advancing translational efforts. Cofilin emerges as a pivotal player, offering potential as a therapeutic target. However, unraveling its complexities requires concerted multidisciplinary efforts for nuanced and effective interventions across the intricate landscape of neurodegenerative diseases and stroke, presenting a hopeful avenue for improved patient care.
Collapse
Affiliation(s)
- Faheem Shehjar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
| | - Daniyah A. Almarghalani
- Stroke Research Unit, Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Reetika Mahajan
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
| | - Syed A.-M. Hasan
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
9
|
Almarghalani DA, Bahader GA, Ali M, Tillekeratne LMV, Shah ZA. Cofilin Inhibitor Improves Neurological and Cognitive Functions after Intracerebral Hemorrhage by Suppressing Endoplasmic Reticulum Stress Related-Neuroinflammation. Pharmaceuticals (Basel) 2024; 17:114. [PMID: 38256947 PMCID: PMC10818666 DOI: 10.3390/ph17010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Neuroinflammation after intracerebral hemorrhage (ICH) is a crucial factor that determines the extent of the injury. Cofilin is a cytoskeleton-associated protein that drives neuroinflammation and microglia activation. A novel cofilin inhibitor (CI) synthesized and developed in our lab has turned out to be a potential therapeutic agent for targeting cofilin-mediated neuroinflammation in an in vitro model of ICH and traumatic brain injury. The current study aims to examine the therapeutic potential of CI in a mouse collagenase model of ICH and examine the neurobehavioral outcomes and its mechanism of action. Male mice were subjected to intrastriatal collagenase injection to induce ICH, and sham mice received needle insertion. Various concentrations (25, 50, and 100 mg/kg) of CI were administered to different cohorts of the animals as a single intravenous injection 3 h following ICH and intraperitoneally every 12 h for 3 days. The animals were tested for neurobehavioral parameters for up to 7 days and sacrificed to collect brains for hematoma volume measurement, Western blotting, and immunohistochemistry. Blood was collected for cofilin, TNF-α, and IL-1β assessments. The results indicated that 50 mg/kg CI improved neurological outcomes, reversed post-stroke cognitive impairment, accelerated hematoma resolution, mitigated cofilin rods/aggregates, and reduced microglial and astrocyte activation in mice with ICH. Microglia morphological analysis demonstrated that CI restored the homeostasis ramification pattern of microglia in mice treated with CI. CI suppressed endoplasmic reticulum stress-related neuroinflammation by inhibiting inflammasomes and cell death signaling pathways. We also showed that CI prevented synaptic loss by reviving the pre- and post-synaptic markers. Our results unveil a novel therapeutic approach to treating ICH and open a window for using CI in clinical practice.
Collapse
Affiliation(s)
- Daniyah A. Almarghalani
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Ghaith A. Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Mohammad Ali
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - L. M. Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A. Shah
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
10
|
Al Yacoub ON, Tarantini S, Zhang Y, Csiszar A, Standifer KM. The Nociceptin/Orphanin FQ peptide receptor antagonist, SB-612111, improves cerebral blood flow in a rat model of traumatic brain injury. Front Pharmacol 2023; 14:1272969. [PMID: 37920208 PMCID: PMC10618424 DOI: 10.3389/fphar.2023.1272969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Traumatic brain injury (TBI) affects more than 2.5 million people in the U.S. each year and is the leading cause of death and disability in children and adults ages 1 to 44. Approximately 90% of TBI cases are classified as mild but may still lead to acute detrimental effects such as impaired cerebral blood flow (CBF) that result in prolonged impacts on brain function and quality of life in up to 15% of patients. We previously reported that nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor antagonism reversed mild blast TBI-induced vestibulomotor deficits and prevented hypoxia. To explore mechanisms by which the NOP receptor-N/OFQ pathway modulates hypoxia and other TBI sequelae, the ability of the NOP antagonist, SB-612111 (SB), to reverse TBI-induced CBF and associated injury marker changes were tested in this study. Male Wistar rats randomly received sham craniotomy or craniotomy + TBI via controlled cortical impact. Injury severity was assessed after 1 h (modified neurological severity score (mNSS). Changes in CBF were assessed 2 h post-injury above the exposed cortex using laser speckle contrast imaging in response to the direct application of increasing concentrations of vehicle or SB (1, 10, and 100 µM) to the brain surface. TBI increased mNSS scores compared to baseline and confirmed mild TBI (mTBI) severity. CBF was significantly impaired on the ipsilateral side of the brain following mTBI, compared to contralateral side and to sham rats. SB dose-dependently improved CBF on the ipsilateral side after mTBI compared to SB effects on the respective ipsilateral side of sham rats but had no effect on contralateral CBF or in uninjured rats. N/OFQ levels increased in the cerebral spinal fluid (CSF) following mTBI, which correlated with the percent decrease in ipsilateral CBF. TBI also activated ERK and cofilin within 3 h post-TBI; ERK activation correlated with increased CSF N/OFQ. In conclusion, this study reveals a significant contribution of the N/OFQ-NOP receptor system to TBI-induced dysregulation of cerebral vasculature and suggests that the NOP receptor should be considered as a potential therapeutic target for TBI.
Collapse
Affiliation(s)
- Omar N. Al Yacoub
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Department of Neurosurgery, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, Oklahoma City, OK, United States
| | - Yong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Csiszar
- Department of Neurosurgery, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kelly M. Standifer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|