1
|
Cooper AJL, Denton TT. ω-Amidase and Its Substrate α-Ketoglutaramate (the α-Keto Acid Analogue of Glutamine) as Biomarkers in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1660-1680. [PMID: 39523108 DOI: 10.1134/s000629792410002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 11/16/2024]
Abstract
A large literature exists on the biochemistry, chemistry, metabolism, and clinical importance of the α-keto acid analogues of many amino acids. However, although glutamine is the most abundant amino acid in human tissues, and transamination of glutamine to its α-keto acid analogue (α-ketoglutaramate; KGM) was described more than seventy years ago, little information is available on the biological importance of KGM. Herein, we summarize the metabolic importance of KGM as an intermediate in the glutamine transaminase - ω-amidase (GTωA) pathway for the conversion of glutamine to anaplerotic α-ketoglutarate. We describe some properties of KGM, notably its occurrence as a lactam (2-hydroxy-5-oxoproline; 99.7% at pH 7.2), and its presence in normal tissues and body fluids. We note that the concentration of KGM is elevated in the cerebrospinal fluid of liver disease patients and that the urinary KGM/creatinine ratio is elevated in patients with an inborn error of the urea cycle and in patients with citrin deficiency. Recently, of the 607 urinary metabolites measured in a kidney disease study, KGM was noted to be one of five metabolites that was most significantly associated with uromodulin (a potential biomarker for tubular functional mass). Finally, we note that KGM is an intermediate in the breakdown of nicotine in certain organisms and is an important factor in nitrogen homeostasis in some microorganisms and plants. In conclusion, we suggest that biochemists and clinicians should consider KGM as (i) a key intermediate in nitrogen metabolism in all branches of life, and (ii) a biomarker, along with ω-amidase, in several diseases.
Collapse
Affiliation(s)
- Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Travis T Denton
- LiT Biosciences, Spokane, WA, 99202-5029, USA. ARRAY(0x5d17383a0090)
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA, USA
| |
Collapse
|
2
|
Darbandi A, Elahi Z, Dadgar-Zankbar L, Ghasemi F, Kakavandi N, Jafari S, Darbandi T, Ghanavati R. Application of microbial enzymes in medicine and industry: current status and future perspectives. Future Microbiol 2024; 19:1419-1437. [PMID: 39269849 PMCID: PMC11552484 DOI: 10.1080/17460913.2024.2398337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Microbes are a major source of enzymes due to their ability to be mass-cultivated and genetically modified. Compared with plant and animal enzymes, microbial enzymes are more stable and active. Enzymes are generally classified into six classes based on their reaction, substrate specificity and mechanism of action. In addition to their application in medicine for treating diseases, these compounds are used as anti-inflammatory, thrombolytic and digestive agents. However, challenges such as immunogenicity, tissue specificity and short in vivo half-life make clinical trials complex. Enzymes are metabolic catalysts in industry and their production and extraction must be optimized to preserve profitability due to rising demand. The present review highlights the increasing importance of bacterial enzymes in industry and medicine and explores methods for their production, extraction and purification.
Collapse
Affiliation(s)
- Atieh Darbandi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghasemi
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Kakavandi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Jafari
- Department of Medical Microbiology & Virology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Talieh Darbandi
- Department of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Roya Ghanavati
- School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| |
Collapse
|
3
|
Zhu Y, Li Z, Liu X, Wen C. Elucidating the role of hepatic enzymes in spontaneous abortion: a Mendelian randomization approach. Front Genet 2024; 15:1336728. [PMID: 39296546 PMCID: PMC11409456 DOI: 10.3389/fgene.2024.1336728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Background While the hepatic enzymes Aspartate Aminotransferase (AST) and Alanine Aminotransferase (ALT) are crucial for liver function, their role in Spontaneous Abortion (SA) has not been thoroughly explored. Utilizing Mendelian Randomization (MR), this study aims to clarify the putative causal relationship between AST/ALT levels and SA. Methods Genome-wide association study (GWAS) summary data for SA (finn-b-O15_ABORT_SPONTAN), AST (ukb-d-30650_raw), and ALT (ukb-d-30620_raw) were acquired from the Integrative Epidemiology Unit OpenGWAS database. Bidirectional MR analysis was conducted using MR-Egger, Weighted Median, Simple Mode, Weighted Mode, and Inverse Variance Weighted (IVW) algorithms, and the robustness of MR results was assessed through sensitivity analyses including Heterogeneity, Horizontal Pleiotropy, and Leave-One-Out (LOO) tests. The causal role of AST and ALT's coaction in SA was explored via multivariable MR (MVMR) analysis. Results The MR results via the IVW algorithm revealed a causal relation between both AST and ALT and SA (AST: P = 0.013; ALT: P = 0.017), identifying them as risk factors for SA (AST: odd ratio (OR) = 1.019; ALT: OR = 1.012). Sensitivity analysis substantiated the reliability of these results. Moreover, not notably causality was found between SA and AST/ALT (P > 0.05). Through MVMR analysis, AST and ALT demonstrated functional complementarity in the occurrence of SA, attributable to counterbalanced causalities (AST: P = 0.128; ALT: P = 0.899). Conclusion The study substantiates a causal linkage between transaminase levels and SA, enhancing our understanding of their biological interaction and the regulatory mechanisms at play. These insights could have implications for identifying novel biomarkers and therapeutic targets for SA.
Collapse
Affiliation(s)
- Yingping Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Zhenghong Li
- Research Department, Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland
| | - Xingfang Liu
- Research Department, Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Ziki RA, Colnot S. Glutamine metabolism, a double agent combating or fuelling hepatocellular carcinoma. JHEP Rep 2024; 6:101077. [PMID: 38699532 PMCID: PMC11063524 DOI: 10.1016/j.jhepr.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 05/05/2024] Open
Abstract
The reprogramming of glutamine metabolism is a key event in cancer more generally and in hepatocellular carcinoma (HCC) in particular. Glutamine consumption supplies tumours with ATP and metabolites through anaplerosis of the tricarboxylic acid cycle, while glutamine production can be enhanced by the overexpression of glutamine synthetase. In HCC, increased glutamine production is driven by activating mutations in the CTNNB1 gene encoding β-catenin. Increased glutamine synthesis or utilisation impacts tumour epigenetics, oxidative stress, autophagy, immunity and associated pathways, such as the mTOR (mammalian target of rapamycin) pathway. In this review, we will discuss studies which emphasise the pro-tumoral or tumour-suppressive effect of glutamine overproduction. It is clear that more comprehensive studies are needed as a foundation from which to develop suitable therapies targeting glutamine metabolic pathways, depending on the predicted pro- or anti-tumour role of dysregulated glutamine metabolism in distinct genetic contexts.
Collapse
Affiliation(s)
- Razan Abou Ziki
- INSERM, Sorbonne Université, Centre de Recherche des Cordeliers (CRC), Paris, F-75006, France
- Équipe labellisée Ligue Nationale Contre le Cancer, France
| | - Sabine Colnot
- INSERM, Sorbonne Université, Centre de Recherche des Cordeliers (CRC), Paris, F-75006, France
- Équipe labellisée Ligue Nationale Contre le Cancer, France
| |
Collapse
|
5
|
Fan Y, Xue H, Li Z, Huo M, Gao H, Guan X. Exploiting the Achilles' heel of cancer: disrupting glutamine metabolism for effective cancer treatment. Front Pharmacol 2024; 15:1345522. [PMID: 38510646 PMCID: PMC10952006 DOI: 10.3389/fphar.2024.1345522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Cancer cells have adapted to rapid tumor growth and evade immune attack by reprogramming their metabolic pathways. Glutamine is an important nitrogen resource for synthesizing amino acids and nucleotides and an important carbon source in the tricarboxylic acid (TCA) cycle and lipid biosynthesis pathway. In this review, we summarize the significant role of glutamine metabolism in tumor development and highlight the vulnerabilities of targeting glutamine metabolism for effective therapy. In particular, we review the reported drugs targeting glutaminase and glutamine uptake for efficient cancer treatment. Moreover, we discuss the current clinical test about targeting glutamine metabolism and the prospective direction of drug development.
Collapse
Affiliation(s)
- Yuxin Fan
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Han Xue
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Zhimin Li
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Mingge Huo
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Hongxia Gao
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
| | - Xingang Guan
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| |
Collapse
|
6
|
Zhu X, Zhang S, Yu Y, Li S, Yang C, Chang Y. Inhibitory Effect of L-Methionine on Alternaria alternata Based on Metabolomics Analysis. J Fungi (Basel) 2024; 10:151. [PMID: 38392823 PMCID: PMC10890048 DOI: 10.3390/jof10020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Alternaria alternata is the main pathogenic fungus of postharvest black spots in fruits and vegetables. This study aimed to explore the antifungal activity of methionine on A. alternata in vitro and to reveal related antifungal mechanisms through a metabolomics analysis. The results showed that the inhibitory effects of L-methionine (Met) treatment on mycelium growth, spore germination, and the germ tube elongation of A. alternata were enhanced with an increase in the Met concentration, but the inhibitory effects decreased when the Met concentration was higher than 50 mmolL-1. The results of propidium iodide staining and scanning electron microscopy showed that the Met treatment damaged the plasma membrane integrity of the A. alternata spores and caused an irreversible deformation of mycelium. In addition, after the Met treatment, the leakage of electrolytes, nucleic acid, and proteins in the A. alternata cells was significantly higher than that in the control group, indicating that the Met treatment increased the permeability of the cell membranes. Eighty-one different metabolites, divided into seven categories, were identified through the metabolomics analysis, including forty-three downregulated metabolites and thirty-eight upregulated metabolites. Among them, these differential metabolites were mainly involved in amino acid synthesis and metabolism, the pentose phosphate pathway, and the TCA cycle. Therefore, the antifungal effect of the Met treatment on A. alternata was mainly to damage the integrity of the cell membranes, make nucleic acid and protein contents leak, and affect the TCA cycle, carbohydrate metabolism, amino acid synthesis metabolism, and the metabolic pathways associated with cell membrane biosynthesis. Thus, the growth and development of A. alternata were inhibited. The research enriched the investigation of the effect of the antifungal mechanism of Met treatment on A. alternata and provided a theoretical basis for the application of Met to prevent and treat postharvest black spots in fruits and vegetables.
Collapse
Affiliation(s)
- Xianran Zhu
- College of Food Science, Shanxi Normal University, Taiyuan 030000, China
| | - Shaoying Zhang
- College of Food Science, Shanxi Normal University, Taiyuan 030000, China
| | - Youwei Yu
- College of Food Science, Shanxi Normal University, Taiyuan 030000, China
| | - Shengwang Li
- College of Food Science, Shanxi Normal University, Taiyuan 030000, China
| | - Chao Yang
- College of Food Science, Shanxi Normal University, Taiyuan 030000, China
| | - Yuan Chang
- College of Food Science, Shanxi Normal University, Taiyuan 030000, China
| |
Collapse
|
7
|
Bunik VI. Editorial: Experts' opinion in medicine 2022. Front Med (Lausanne) 2023; 10:1296196. [PMID: 37886362 PMCID: PMC10598464 DOI: 10.3389/fmed.2023.1296196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Affiliation(s)
- Victoria I. Bunik
- Belosersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|