1
|
Ebrahimi S, Eini O, Baßler A, Hanke A, Yildirim Z, Wassenegger M, Krczal G, Uslu VV. Beet Curly Top Iran Virus Rep and V2 Suppress Post-Transcriptional Gene Silencing via Distinct Modes of Action. Viruses 2023; 15:1996. [PMID: 37896771 PMCID: PMC10611197 DOI: 10.3390/v15101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Beet curly top Iran virus (BCTIV) is a yield-limiting geminivirus belonging to the becurtovirus genus. The genome organization of BCTIV is unique such that the complementary strand of BCTIV resembles Mastrevirus, whereas the virion strand organization is similar to the Curtovirus genus. Geminiviruses are known to avoid the plant defense system by suppressing the RNA interference mechanisms both at the transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS) levels. Multiple geminivirus genes have been identified as viral suppressors of RNA silencing (VSR) but VSR activity remains mostly elusive in becurtoviruses. We found that BCTIV-V2 and -Rep could suppress specific Sense-PTGS mechanisms with distinct efficiencies depending on the nature of the silencing inducer and the target gene. Local silencing induced by GFP inverted repeat (IR) could not be suppressed by V2 but was partially reduced by Rep. Accordingly, we documented that Rep but not V2 could suppress systemic silencing induced by GFP-IR. In addition, we showed that the VSR activity of Rep was partly regulated by RNA-dependent RNA Polymerase 6 (RDR6), whereas the VSR activity of V2 was independent of RDR6. Domain mapping for Rep showed that an intact Rep protein was required for the suppression of PTGS. In summary, we showed that BCTIV-Rep and -V2 function as silencing suppressors with distinct modes of action.
Collapse
Affiliation(s)
- Saeideh Ebrahimi
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
- Department of Plant Protection, University of Zanjan, Zanjan 313, Iran
| | - Omid Eini
- Department of Plant Protection, University of Zanjan, Zanjan 313, Iran
- Department of Phytopathology, Institute for Sugar Beet Research, 37079 Göttingen, Germany
| | - Alexandra Baßler
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Arvid Hanke
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
- MAPS, COS, Heidelberg University, 69120 Heidelberg, Germany
| | - Zeynep Yildirim
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Michael Wassenegger
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Gabi Krczal
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Veli Vural Uslu
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
- MAPS, COS, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
H. El-Sappah A, Qi S, A. Soaud S, Huang Q, M. Saleh A, A. S. Abourehab M, Wan L, Cheng GT, Liu J, Ihtisham M, Noor Z, Rouf Mir R, Zhao X, Yan K, Abbas M, Li J. Natural resistance of tomato plants to Tomato yellow leaf curl virus. FRONTIERS IN PLANT SCIENCE 2022; 13:1081549. [PMID: 36600922 PMCID: PMC9807178 DOI: 10.3389/fpls.2022.1081549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most harmful afflictions in the world that affects tomato growth and production. Six regular antagonistic genes (Ty-1, Ty-2, Ty-3, Ty-4, ty-5, and Ty-6) have been transferred from wild germplasms to commercial cultivars as TYLCV protections. With Ty-1 serving as an appropriate source of TYLCV resistance, only Ty-1, Ty-2, and Ty-3 displayed substantial levels of opposition in a few strains. It has been possible to clone three TYLCV opposition genes (Ty-1/Ty-3, Ty-2, and ty-5) that target three antiviral safety mechanisms. However, it significantly impacts obtaining permanent resistance to TYLCV, trying to maintain opposition whenever possible, and spreading opposition globally. Utilizing novel methods, such as using resistance genes and identifying new resistance resources, protects against TYLCV in tomato production. To facilitate the breeders make an informed decision and testing methods for TYLCV blockage, this study highlights the portrayal of typical obstruction genes, common opposition sources, and subatomic indicators. The main goal is to provide a fictitious starting point for the identification and application of resistance genes as well as the maturation of tomato varieties that are TYLCV-resistant.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Shiming Qi
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, China
| | - Salma A. Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Alaa M. Saleh
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Lingyun Wan
- Key Laboratory of Guangxi for High-quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Guo-ting Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, China
| | - Jingyi Liu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Muhammad Ihtisham
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Zarqa Noor
- School of Chemical Engineering Beijing Institute of Technology, Beijing, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), SKUAST–Kashmir, Sopore, India
| | - Xin Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
3
|
Mastrevirus Rep and RepA Proteins Suppress de novo Transcriptional Gene Silencing. Int J Mol Sci 2021; 22:ijms222111462. [PMID: 34768892 PMCID: PMC8584122 DOI: 10.3390/ijms222111462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023] Open
Abstract
Transcriptional gene silencing (TGS) in plants is a defense mechanism against DNA virus infection. The genomes of viruses in the Geminiviridae family encode several TGS suppressors. In this study, we induced de novo TGS against the transgenic GFP gene encoding green fluorescent protein by expressing a hairpin-shaped self-complementary RNA corresponding to the enhancer region of the 35S promoter (hpE35S). In addition, we examined the TGS suppression activity of proteins encoded in the genome of Tobacco yellow dwarf virus (TYDV, genus Mastrevirus). The results show that the replication-associated protein (Rep) and RepA encoded by TYDV have TGS suppressor activity and lead to decreased accumulation of 24-nt siRNAs. These results suggest that Rep and RepA can block the steps before the loading of siRNAs into Argonaute (AGO) proteins. This is the first report of TGS suppressors in the genus Mastrevirus.
Collapse
|
4
|
Baig MS, Akhtar S, Khan JA. Engineering tolerance to CLCuD in transgenic Gossypium hirsutum cv. HS6 expressing Cotton leaf curl Multan virus-C4 intron hairpin. Sci Rep 2021; 11:14172. [PMID: 34238948 PMCID: PMC8266814 DOI: 10.1038/s41598-021-93502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 06/16/2021] [Indexed: 11/25/2022] Open
Abstract
Cotton leaf curl disease (CLCuD), caused by begomoviruses in combination with betasatellite molecule, has adversely affected cotton industry of Indian subcontinent. To devise a CLCuD-control strategy, RNAi-mediated approach was followed in this study. Gossypium hirsutum cv. HS6 plants were transformed with intron-hairpin RNAi (ihpRNAi-C4) construct carrying silencing suppressor C4 gene of Cotton leaf curl Multan virus (CLCuMuV). Efficacy of the construct in imparting CLCuD resistance was evaluated in transgenic (T0, T1) cotton lines. Accumulation of CLCuMuV/betasatellite and attenuation of CLCuD symptoms in the transgenic lines were monitored at different times interval after virus inoculation. Northern hybridization revealed the expression of C4-gene derived siRNA. Expression of the ihpRNAi transcript was recorded higher in transgenic lines expressing siRNA which supposedly targeted the C4 gene. A significant delay in detection of virus as well as betasatellite was observed in the transgenic lines. At 30 days post inoculation (dpi), none of the lines tested positive. At 45 dpi, however, it could be detected in few lines having much lower titre as compared to non-transformed control plants. Notably, till 60 dpi, no significant progression of the virus/betasatellite DNA was observed and the plants did not exhibit any characteristic CLCuD symptoms. A tolerance phenomenon leading to escape of CLCuD symptoms in the transformed cotton was described.
Collapse
Affiliation(s)
- Mirza S Baig
- Department of Biosciences, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi, 110025, India
- Department of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Sadia Akhtar
- Department of Biosciences, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi, 110025, India
| | - Jawaid A Khan
- Department of Biosciences, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
5
|
Teixeira RM, Ferreira MA, Raimundo GAS, Fontes EPB. Geminiviral Triggers and Suppressors of Plant Antiviral Immunity. Microorganisms 2021; 9:microorganisms9040775. [PMID: 33917649 PMCID: PMC8067988 DOI: 10.3390/microorganisms9040775] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Geminiviruses are circular single-stranded DNA plant viruses encapsidated into geminate virion particles, which infect many crops and vegetables and, hence, represent significant agricultural constraints worldwide. To maintain their broad-range host spectrum and establish productive infection, the geminiviruses must circumvent a potent plant antiviral immune system, which consists of a multilayered perception system represented by RNA interference sensors and effectors, pattern recognition receptors (PRR), and resistance (R) proteins. This recognition system leads to the activation of conserved defense responses that protect plants against different co-existing viral and nonviral pathogens in nature. Furthermore, a specific antiviral cell surface receptor signaling is activated at the onset of geminivirus infection to suppress global translation. This review highlighted these layers of virus perception and host defenses and the mechanisms developed by geminiviruses to overcome the plant antiviral immunity mechanisms.
Collapse
|
6
|
Wang Y, Wu Y, Gong Q, Ismayil A, Yuan Y, Lian B, Jia Q, Han M, Deng H, Hong Y, Hanley-Bowdoin L, Qi Y, Liu Y. Geminiviral V2 Protein Suppresses Transcriptional Gene Silencing through Interaction with AGO4. J Virol 2019; 93:e01675-18. [PMID: 30626668 PMCID: PMC6401443 DOI: 10.1128/jvi.01675-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
In plants, RNA-directed DNA methylation (RdDM)-mediated transcriptional gene silencing (TGS) is a natural antiviral defense against geminiviruses. Several geminiviral proteins have been shown to target the enzymes related to the methyl cycle or histone modification; however, it remains largely unknown whether and by which mechanism geminiviruses directly inhibit RdDM-mediated TGS. In this study, we showed that Cotton leaf curl Multan virus (CLCuMuV) V2 directly interacts with Nicotiana benthamiana AGO4 (NbAGO4) and that the L76S mutation in V2 (V2L76S) abolishes such interaction. We further showed that V2, but not V2L76S, can suppresses RdDM and TGS. Silencing of NbAGO4 inhibits TGS, reduces the viral methylation level, and enhances CLCuMuV DNA accumulation. In contrast, the V2L76S substitution mutant attenuates CLCuMuV infection and enhances the viral methylation level. These findings reveal that CLCuMuV V2 contributes to viral infection by interaction with NbAGO4 to suppress RdDM-mediated TGS in plants.IMPORTANCE In plants, the RNA-directed DNA methylation (RdDM) pathway is a natural antiviral defense mechanism against geminiviruses. However, how geminiviruses counter RdDM-mediated defense is largely unknown. Our findings reveal that Cotton leaf curl Multan virus V2 contributes to viral infection by interaction with NbAGO4 to suppress RNA-directed DNA methylation-mediated transcriptional gene silencing in plants. Our work provides the first evidence that a geminiviral protein is able to directly target core RdDM components to counter RdDM-mediated TGS antiviral defense in plants, which extends our current understanding of viral counters to host antiviral defense.
Collapse
Affiliation(s)
- Yunjing Wang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Yuyao Wu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Qian Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Asigul Ismayil
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Yuxiang Yuan
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Bi Lian
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Qi Jia
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics and the Center of Biomedical Analysis, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics and the Center of Biomedical Analysis, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiguo Hong
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Yijun Qi
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Ataie Kachoie E, Behjatnia SAA, Kharazmi S. Expression of Human Immunodeficiency Virus type 1 (HIV-1) coat protein genes in plants using cotton leaf curl Multan betasatellite-based vector. PLoS One 2018; 13:e0190403. [PMID: 29304063 PMCID: PMC5755781 DOI: 10.1371/journal.pone.0190403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022] Open
Abstract
It has already been demonstrated that a betasatellite associated with cotton leaf curl Multan virus (CLCuMB) can be used as a plant and animal gene delivery vector to plants. To examine the ability of CLCuMB as a tool to transfer coat protein genes of HIV-1 to plants, two recombinant CLCuMB constructs in which the CLCuMB βC1 ORF was replaced with two HIV-1 genes fractions including a 696 bp DNA fragment related to the HIV-1 p24 gene and a 1501 bp DNA fragment related to the HIV-1 gag gene were constructed. Gag is the HIV-1 coat protein gene and p24 is a component of the particle capsid. Gag and p24 are used for vaccine production. Recombinant constructs were inoculated to Nicotiana glutinosa and N. benthamiana plants in the presence of an Iranian isolate of Tomato yellow leaf curl virus (TYLCV-[Ab]) as a helper virus. PCR analysis of inoculated plants indicated that p24 gene was successfully replicated in inoculated plants, but the gag gene was not. Real-time PCR and ELISA analysis of N. glutinosa and N. benthamiana plants containing the replicative forms of recombinant construct of CLCuMB/p24 indicated that p24 was expressed in these plants. This CLCuMB-based expression system offers the possibility of mass production of recombinant HIV-1 p24 protein in plants.
Collapse
Affiliation(s)
| | | | - Sara Kharazmi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
8
|
Eini O. A betasatellite-encoded protein regulates key components of gene silencing system in plants. Mol Biol 2017. [DOI: 10.1134/s0026893317030037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Haxim Y, Ismayil A, Jia Q, Wang Y, Zheng X, Chen T, Qian L, Liu N, Wang Y, Han S, Cheng J, Qi Y, Hong Y, Liu Y. Autophagy functions as an antiviral mechanism against geminiviruses in plants. eLife 2017; 6:e23897. [PMID: 28244873 PMCID: PMC5362266 DOI: 10.7554/elife.23897] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/26/2017] [Indexed: 12/20/2022] Open
Abstract
Autophagy is an evolutionarily conserved process that recycles damaged or unwanted cellular components, and has been linked to plant immunity. However, how autophagy contributes to plant immunity is unknown. Here we reported that the plant autophagic machinery targets the virulence factor βC1 of Cotton leaf curl Multan virus (CLCuMuV) for degradation through its interaction with the key autophagy protein ATG8. A V32A mutation in βC1 abolished its interaction with NbATG8f, and virus carrying βC1V32A showed increased symptoms and viral DNA accumulation in plants. Furthermore, silencing of autophagy-related genes ATG5 and ATG7 reduced plant resistance to the DNA viruses CLCuMuV, Tomato yellow leaf curl virus, and Tomato yellow leaf curl China virus, whereas activating autophagy by silencing GAPC genes enhanced plant resistance to viral infection. Thus, autophagy represents a novel anti-pathogenic mechanism that plays an important role in antiviral immunity in plants.
Collapse
Affiliation(s)
- Yakupjan Haxim
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Asigul Ismayil
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qi Jia
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Wang
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiyin Zheng
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tianyuan Chen
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lichao Qian
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Na Liu
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yunjing Wang
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shaojie Han
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiaxuan Cheng
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yijun Qi
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yule Liu
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Akbar F, Iqbal Z, Briddon RW, Vazquez F, Saeed M. The 35-amino acid C2 protein of Cotton leaf curl Kokhran virus, Burewala, implicated in resistance breaking in cotton, retains some activities of the full-length protein. Virus Genes 2016; 52:688-97. [PMID: 27209537 DOI: 10.1007/s11262-016-1357-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/12/2016] [Indexed: 11/26/2022]
Abstract
With one exception, all the begomoviruses characterized so far encode an ~134-amino acid (aa) (A)C2 protein. The exception is the "Burewala" strain of Cotton leaf curl Kokhran virus (CLCuKoV-Bu), associated with resistance breaking in cotton across Pakistan and northwestern India, that encodes a truncated 35-aa C2. The C2 protein encoded by begomoviruses performs multiple functions including suppression of post-transcriptional gene silencing (PTGS), modulating microRNA (miRNA) expression and may be a pathogenicity determinant. The study described here was designed to investigate whether the CLCuKoV-Bu 35-aa C2 retains the activities of the full-length C2 protein. The results showed the 35-aa C2 of CLCuKoV-Bu acts as a pathogenicity determinant, suppresses PTGS and upregulates miRNA expression when expressed from a Potato virus X vector in Nicotiana benthamiana. The symptoms induced by expression of full-length C2 were more severe than those induced by the 35-aa C2. The accumulation of most developmental miRNAs decreases with the full-length C2 protein and increases with the 35-aa peptide of CLCuKoV-Bu. The study also revealed that 35-aa peptide of CLCuKoV-Bu maintains suppressor of silencing activity at a level equal to that of full-length C2. The significance of the results with respect to virus fitness and resistance breaking is discussed.
Collapse
Affiliation(s)
- Fazal Akbar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
- Botanical Institute of the University of Basel, Zürich-Basel Plant Science Center, Part of the Swiss Plant Science Web, Schnbeinstrasse 6, 4056, Basel, Switzerland
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Zafar Iqbal
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Franck Vazquez
- Botanical Institute of the University of Basel, Zürich-Basel Plant Science Center, Part of the Swiss Plant Science Web, Schnbeinstrasse 6, 4056, Basel, Switzerland
- MDPI AG, Klybeckstrasse 64, 4057, Basel, Switzerland
| | - Muhammad Saeed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|