1
|
Gardano L, Ferreira J, Le Roy C, Ledoux D, Varin-Blank N. The survival grip-how cell adhesion promotes tumor maintenance within the microenvironment. FEBS Lett 2024. [PMID: 39704141 DOI: 10.1002/1873-3468.15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Cell adhesion is warranted by proteins that are crucial for the maintenance of tissue integrity and homeostasis. Most of these proteins behave as receptors to link adhesion to the control of cell survival and their expression or regulation are often altered in cancers. B-cell malignancies do not evade this principle as they are sustained in relapsed niches by interacting with the microenvironment that includes cells and their secreted factors. Focusing on chronic lymphocytic leukemia and mantle cell lymphoma, this Review delves with the molecules involved in the dialog between the adhesion platforms and signaling pathways known to regulate both cell adhesion and survival. Current therapeutic strategies disrupt adhesive structures and compromise the microenvironment support to tumor cells, rendering them sensitive to immune recognition. The development of organ-on-chip and 3D culture systems, such as spheroids, have revealed the importance of mechanical cues in regulating signaling pathways to organize cell adhesion and survival. All these elements contribute to the elaboration of the crosstalk of lymphoma cells with the microenvironment and the education processes that allow the establishment of the supportive niche.
Collapse
Affiliation(s)
- Laura Gardano
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Jordan Ferreira
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Christine Le Roy
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Dominique Ledoux
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Nadine Varin-Blank
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
2
|
Parambath S, Selvraj NR, Venugopal P, Aradhya R. Notch Signaling: An Emerging Paradigm in the Pathogenesis of Reproductive Disorders and Diverse Pathological Conditions. Int J Mol Sci 2024; 25:5423. [PMID: 38791461 PMCID: PMC11121885 DOI: 10.3390/ijms25105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
The highly conserved Notch pathway, a pillar of juxtacrine signaling, orchestrates intricate intercellular communication, governing diverse developmental and homeostatic processes through a tightly regulated cascade of proteolytic cleavages. This pathway, culminating in the migration of the Notch intracellular domain (NICD) to the nucleus and the subsequent activation of downstream target genes, exerts a profound influence on a plethora of molecular processes, including cell cycle progression, lineage specification, cell-cell adhesion, and fate determination. Accumulating evidence underscores the pivotal role of Notch dysregulation, encompassing both gain and loss-of-function mutations, in the pathogenesis of numerous human diseases. This review delves deep into the multifaceted roles of Notch signaling in cellular dynamics, encompassing proliferation, differentiation, polarity maintenance, epithelial-mesenchymal transition (EMT), tissue regeneration/remodeling, and its intricate interplay with other signaling pathways. We then focus on the emerging landscape of Notch aberrations in gynecological pathologies predisposing individuals to infertility. By highlighting the exquisite conservation of Notch signaling in Drosophila and its power as a model organism, we pave the way for further dissection of disease mechanisms and potential therapeutic interventions through targeted modulation of this master regulatory pathway.
Collapse
Affiliation(s)
| | | | | | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India; (S.P.); (N.R.S.); (P.V.)
| |
Collapse
|
3
|
Una R, Glimm T. A Cellular Potts Model of the interplay of synchronization and aggregation. PeerJ 2024; 12:e16974. [PMID: 38435996 PMCID: PMC10909357 DOI: 10.7717/peerj.16974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
We investigate the behavior of systems of cells with intracellular molecular oscillators ("clocks") where cell-cell adhesion is mediated by differences in clock phase between neighbors. This is motivated by phenomena in developmental biology and in aggregative multicellularity of unicellular organisms. In such systems, aggregation co-occurs with clock synchronization. To account for the effects of spatially extended cells, we use the Cellular Potts Model (CPM), a lattice agent-based model. We find four distinct possible phases: global synchronization, local synchronization, incoherence, and anti-synchronization (checkerboard patterns). We characterize these phases via order parameters. In the case of global synchrony, the speed of synchronization depends on the adhesive effects of the clocks. Synchronization happens fastest when cells in opposite phases adhere the strongest ("opposites attract"). When cells of the same clock phase adhere the strongest ("like attracts like"), synchronization is slower. Surprisingly, the slowest synchronization happens in the diffusive mixing case, where cell-cell adhesion is independent of clock phase. We briefly discuss potential applications of the model, such as pattern formation in the auditory sensory epithelium.
Collapse
Affiliation(s)
- Rose Una
- Department of Mathematics, Western Washington University, Bellingham, WA, United States of America
| | - Tilmann Glimm
- Department of Mathematics, Western Washington University, Bellingham, WA, United States of America
| |
Collapse
|
4
|
Bajpai S, Chelakkot R, Prabhakar R, Inamdar MM. Role of Delta-Notch signalling molecules on cell-cell adhesion in determining heterogeneous chemical and cell morphological patterning. SOFT MATTER 2022; 18:3505-3520. [PMID: 35438097 DOI: 10.1039/d2sm00064d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell mechanics and motility are responsible for collective motion of cells that result in overall deformation of epithelial tissues. On the other hand, contact-dependent cell-cell signalling is responsible for generating a large variety of intricate, self-organized, spatial patterns of the signalling molecules. Moreover, it is becoming increasingly clear that the combined mechanochemical patterns of cell shape/size and signalling molecules in the tissues, for example, in cancerous and sensory epithelium, are governed by mechanochemical coupling between chemical signalling and cell mechanics. However, a clear quantitative picture of how these two aspects of tissue dynamics, i.e., signalling and mechanics, lead to pattern and form is still emerging. Although, a number of recent experiments demonstrate that cell mechanics, cell motility, and cell-cell signalling are tightly coupled in many morphogenetic processes, relatively few modeling efforts have focused on an integrated approach. We extend the vertex model of an epithelial monolayer to account for contact-dependent signalling between adjacent cells and between non-adjacent neighbors through long protrusional contacts with a feedback mechanism wherein the adhesive strength between adjacent cells is controlled by the expression of the signalling molecules in those cells. Local changes in cell-cell adhesion lead to changes in cell shape and size, which in turn drives changes in the levels of signalling molecules. Our simulations show that even this elementary two-way coupling of chemical signalling and cell mechanics is capable of giving rise to a rich variety of mechanochemical patterns in epithelial tissues. In particular, under certain parametric conditions, bimodal distributions in cell size and shape are obtained, which resemble experimental observations in cancerous and sensory tissues.
Collapse
Affiliation(s)
- Supriya Bajpai
- IITB-Monash Research Academy, Mumbai 400076, India.
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
5
|
Yang B, Fu C, Wu Y, Liu Y, Zhang Z, Chen X, Wu D, Gan Z, Chen Z, Cao Y. γ-secretase inhibitors suppress IL-20-mediated osteoclastogenesis via Notch signaling and are affected by Notch2 in vitro. Scand J Immunol 2022; 96:e13169. [PMID: 35384009 DOI: 10.1111/sji.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic immune disease involving the small joints, which often causes irreversible damage. In recent years, elevated interleukin 20 (IL-20) has been observed in synovial fluid, while IL-20 receptor overexpression has been observed in synovial cells. IL-20 is a pleiotropic cytokine that participates in various immune diseases. Further understanding of the relationship between IL-20 and RA can help to identify a potential clinical treatment for RA. This study demonstrated that IL-20 can regulate osteoclast differentiation and function in a dose-dependent manner, while influencing the expression of Notch signaling. Quantitative reverse transcription polymerase chain reaction and western blotting showed that γ-secretase-inhibiting drugs can reverse the effects of IL-20. The effects of Notch2 on IL-20-induced osteoclastogenesis were investigated by immunofluorescence and Notch2 gene silencing via transfection of small interfering RNA; the results showed that Notch2 obviously affected the expression levels of the key protein NFATc1 and downstream osteoclastic proteins. In conclusion, we found that IL-20 regulated the osteoclastogenesis in a dose-dependent manner via Notch signaling, primarily by means of Notch2 activity. This study may help to find new targets for RA treatment.
Collapse
Affiliation(s)
- Benyi Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Chaoran Fu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yilin Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yuanbo Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhen Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xin Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Dongle Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ziqi Gan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhengyuan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yang Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
6
|
A Comprehensive Bioinformatic Analysis of NOTCH Pathway Involvement in Stomach Adenocarcinoma. DISEASE MARKERS 2021; 2021:4739868. [PMID: 34925644 PMCID: PMC8674080 DOI: 10.1155/2021/4739868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Background Activation of NOTCH signaling pathways, which are key regulators of multiple cellular functions, has been frequently implicated in cancer pathogenesis, and NOTCH inhibitors have received much recent focus in the context of cancer therapeutics. However, the role and possible involvement of NOTCH pathways in stomach adenocarcinoma (STAD) are unclear. Here, putative regulatory mechanisms and functions of NOTCH pathways in STAD were investigated. Methods Publicly available data from the TCGA-STAD database were utilized to explore the involvement of canonical NOTCH pathways in STAD by analyzing RNA expression levels of NOTCH receptors, ligands, and downstream genes. Statistical analysis of the data pertaining to cancer and noncancerous samples was performed using R software packages and public databases/webservers. Results Significant differential gene expression between control and STAD samples was noted for all NOTCH receptors (NOTCH1, 2, 3, and 4), the delta-like NOTCH ligands (DLL-3 and 4), and typical downstream genes (HES1 and HEY1). Four genes (NOTCH1, NOTCH2, NOTCH3, and HEY1) presented prognostic values for the STAD outcome in terms of overall survival. Functional enrichment analysis indicated that NOTCH family genes-strongly correlated genes were mainly enriched in several KEGG signaling pathways such as the PI3K-Akt signaling pathway, human papillomavirus infection, focal adhesion, Rap1 signaling pathway, and ECM-receptor interaction. Gene set enrichment analysis (GSEA) results showed that NOTCH family genes-significantly correlated genes were mainly enriched in four signaling pathways, ECM (extracellular matrix), tumor angiogenesis, inflammatory response, and immune regulation. Conclusions NOTCH family genes may play an essential role in the progression of STAD by modulating immune cells and mediating ECM synthesis, angiogenesis, focal adhesion, and PI3K-Akt signaling. Multiple NOTCH family genes are valuable candidate biomarkers or therapeutic targets for the management of STAD.
Collapse
|
7
|
Zafir S, Zhou W, Menkhorst E, Santos L, Dimitriadis E. MAML1: a coregulator that alters endometrial epithelial cell adhesive capacity. FERTILITY RESEARCH AND PRACTICE 2021; 7:8. [PMID: 33773601 PMCID: PMC8004388 DOI: 10.1186/s40738-021-00100-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Abnormalities in endometrial receptivity has been identified as a major barrier to successful embryo implantation. Endometrial receptivity refers to the conformational and biochemical changes occurring in the endometrial epithelial layer which make it adhesive and receptive to blastocyst attachment. This takes place during the mid-secretory phase of woman's menstrual cycle and is a result of a delicate interplay between numerous hormones, cytokines and other factors. Outside of this window, the endometrium is refractory to an implanting blastocyst. It has been shown that Notch ligands and receptors are dysregulated in the endometrium of infertile women. Mastermind Like Transcriptional Coactivator 1 (MAML1) is a known coactivator of the Notch signaling pathway. This study aimed to determine the role of MAML1 in regulating endometrial receptivity. METHODS The expression and localization of MAML1 in the fertile human endometrium (non-receptive proliferative phase versus receptive mid-secretory phase) were determined by immunohistochemistry. Ishikawa cells were used as an endometrial epithelial model to investigate the functional consequences of MAML1 knockdown on endometrial adhesive capacity to HTR8/SVneo (trophoblast cell line) spheroids. After MAML1 knockdown in Ishikawa cells, the expression of endometrial receptivity markers and Notch dependent and independent pathway members were assessed by qPCR. Two-tailed unpaired or paired student's t-test were used for statistical analysis with a significance threshold of P < 0.05. RESULTS MAML1 was localized in the luminal epithelium, glandular epithelium and stroma of human endometrium and the increased expression identified in the mid-secretory phase was restricted only to the luminal epithelium (P < 0.05). Functional analysis using Ishikawa cells demonstrated that knockdown of MAML1 significantly reduced epithelial adhesive capacity (P < 0.01) to HTR8/SVneo (trophoblast cell line) spheroids compared to control. MAML1 knockdown significantly affected the expression of classical receptivity markers (SPP1, DPP4) and this response was not directly via hormone receptors. The expression level of Hippo pathway target Ankyrin repeat domain-containing protein 1 (ANKRD1) was also affected after MAML1 knockdown in Ishikawa cells. CONCLUSION Our data strongly suggest that MAML1 is involved in regulating the endometrial adhesive capacity and may facilitate embryo attachment, either directly or indirectly through the Notch signaling pathway.
Collapse
Affiliation(s)
- Sadaf Zafir
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Ellen Menkhorst
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Leilani Santos
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia. .,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
8
|
Stassen OMJA, Ristori T, Sahlgren CM. Notch in mechanotransduction - from molecular mechanosensitivity to tissue mechanostasis. J Cell Sci 2020; 133:133/24/jcs250738. [PMID: 33443070 DOI: 10.1242/jcs.250738] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue development and homeostasis are controlled by mechanical cues. Perturbation of the mechanical equilibrium triggers restoration of mechanostasis through changes in cell behavior, while defects in these restorative mechanisms lead to mechanopathologies, for example, osteoporosis, myopathies, fibrosis or cardiovascular disease. Therefore, sensing mechanical cues and integrating them with the biomolecular cell fate machinery is essential for the maintenance of health. The Notch signaling pathway regulates cell and tissue fate in nearly all tissues. Notch activation is directly and indirectly mechanosensitive, and regulation of Notch signaling, and consequently cell fate, is integral to the cellular response to mechanical cues. Fully understanding the dynamic relationship between molecular signaling, tissue mechanics and tissue remodeling is challenging. To address this challenge, engineered microtissues and computational models play an increasingly large role. In this Review, we propose that Notch takes on the role of a 'mechanostat', maintaining the mechanical equilibrium of tissues. We discuss the reciprocal role of Notch in the regulation of tissue mechanics, with an emphasis on cardiovascular tissues, and the potential of computational and engineering approaches to unravel the complex dynamic relationship between mechanics and signaling in the maintenance of cell and tissue mechanostasis.
Collapse
Affiliation(s)
- Oscar M J A Stassen
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland.,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Cecilia M Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland .,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
9
|
Lee YJ, Yang CP, Miyares RL, Huang YF, He Y, Ren Q, Chen HM, Kawase T, Ito M, Otsuna H, Sugino K, Aso Y, Ito K, Lee T. Conservation and divergence of related neuronal lineages in the Drosophila central brain. eLife 2020; 9:53518. [PMID: 32255422 PMCID: PMC7173964 DOI: 10.7554/elife.53518] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/06/2020] [Indexed: 12/31/2022] Open
Abstract
Wiring a complex brain requires many neurons with intricate cell specificity, generated by a limited number of neural stem cells. Drosophila central brain lineages are a predetermined series of neurons, born in a specific order. To understand how lineage identity translates to neuron morphology, we mapped 18 Drosophila central brain lineages. While we found large aggregate differences between lineages, we also discovered shared patterns of morphological diversification. Lineage identity plus Notch-mediated sister fate govern primary neuron trajectories, whereas temporal fate diversifies terminal elaborations. Further, morphological neuron types may arise repeatedly, interspersed with other types. Despite the complexity, related lineages produce similar neuron types in comparable temporal patterns. Different stem cells even yield two identical series of dopaminergic neuron types, but with unrelated sister neurons. Together, these phenomena suggest that straightforward rules drive incredible neuronal complexity, and that large changes in morphology can result from relatively simple fating mechanisms.
Collapse
Affiliation(s)
- Ying-Jou Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ching-Po Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Rosa L Miyares
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Yu-Fen Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Yisheng He
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Qingzhong Ren
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Hui-Min Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Takashi Kawase
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Masayoshi Ito
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ken Sugino
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Yoshi Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Tzumin Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
10
|
Ng CL, Qian Y, Schulz C. Notch and Delta are required for survival of the germline stem cell lineage in testes of Drosophila melanogaster. PLoS One 2019; 14:e0222471. [PMID: 31513679 PMCID: PMC6742463 DOI: 10.1371/journal.pone.0222471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/29/2019] [Indexed: 01/27/2023] Open
Abstract
In all metazoan species, sperm is produced from germline stem cells. These self-renew and produce daughter cells that amplify and differentiate dependent on interactions with somatic support cells. In the male gonad of Drosophila melanogaster, the germline and somatic cyst cells co-differentiate as cysts, an arrangement in which the germline is completely enclosed by cytoplasmic extensions from the cyst cells. Notch is a developmentally relevant receptor in a pathway requiring immediate proximity with the signal sending cell. Here, we show that Notch is expressed in the cyst cells of wild-type testes. Notch becomes activated in the transition zone, an apical area of the testes in which the cyst cells express stage-specific transcription factors and the enclosed germline finalizes transit-amplifying divisions. Reducing the ligand Delta from the germline cells via RNA-Interference or reducing the receptor Notch from the cyst cells via CRISPR resulted in cell death concomitant with loss of germline cells from the transition zone. This shows that Notch signaling is essential for the survival of the germline stem cell lineage.
Collapse
Affiliation(s)
- Chun L. Ng
- University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yue Qian
- University of North Georgia, Department of Biology, Oakwood, Georgia, United States of America
| | - Cordula Schulz
- University of Georgia, Department of Cellular Biology, Athens, Georgia, United States of America
| |
Collapse
|
11
|
Murata A, Hikosaka M, Yoshino M, Zhou L, Hayashi SI. Kit-independent mast cell adhesion mediated by Notch. Int Immunol 2019; 31:69-79. [PMID: 30299470 DOI: 10.1093/intimm/dxy067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/05/2018] [Indexed: 11/13/2022] Open
Abstract
Kit/CD117 plays a crucial role in the cell-cell and cell-matrix adhesion of mammalian mast cells (MCs); however, it is unclear whether other adhesion molecule(s) perform important roles in the adhesion of MCs. In the present study, we show a novel Kit-independent adhesion mechanism of mouse cultured MCs mediated by Notch family members. On stromal cells transduced with each Notch ligand gene, Kit and its signaling become dispensable for the entire adhesion process of MCs from tethering to spreading. The Notch-mediated spreading of adherent MCs involves the activation of signaling via phosphatidylinositol 3-kinases and mitogen-activated protein kinases, similar to Kit-mediated spreading. Despite the activation of the same signaling pathways, while Kit supports the adhesion and survival of MCs, Notch only supports adhesion. Thus, Notch family members are specialized adhesion molecules for MCs that effectively replace the adhesion function of Kit in order to support the interaction of MCs with the surrounding cellular microenvironments.
Collapse
Affiliation(s)
- Akihiko Murata
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mari Hikosaka
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Miya Yoshino
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Shin-Ichi Hayashi
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
12
|
LaFoya B, Munroe JA, Mia MM, Detweiler MA, Crow JJ, Wood T, Roth S, Sharma B, Albig AR. Notch: A multi-functional integrating system of microenvironmental signals. Dev Biol 2016; 418:227-41. [PMID: 27565024 PMCID: PMC5144577 DOI: 10.1016/j.ydbio.2016.08.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
Abstract
The Notch signaling cascade is an evolutionarily ancient system that allows cells to interact with their microenvironmental neighbors through direct cell-cell interactions, thereby directing a variety of developmental processes. Recent research is discovering that Notch signaling is also responsive to a broad variety of stimuli beyond cell-cell interactions, including: ECM composition, crosstalk with other signaling systems, shear stress, hypoxia, and hyperglycemia. Given this emerging understanding of Notch responsiveness to microenvironmental conditions, it appears that the classical view of Notch as a mechanism enabling cell-cell interactions, is only a part of a broader function to integrate microenvironmental cues. In this review, we summarize and discuss published data supporting the idea that the full function of Notch signaling is to serve as an integrator of microenvironmental signals thus allowing cells to sense and respond to a multitude of conditions around them.
Collapse
Affiliation(s)
- Bryce LaFoya
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA
| | - Jordan A Munroe
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Masum M Mia
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Michael A Detweiler
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Jacob J Crow
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA
| | - Travis Wood
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Steven Roth
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Bikram Sharma
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Allan R Albig
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|