1
|
Dominguez G, Wu Y, Zhou J. Epigenetic Regulation and Neurodevelopmental Disorders: From MeCP2 to the TCF20/PHF14 Complex. Genes (Basel) 2024; 15:1653. [PMID: 39766920 PMCID: PMC11728296 DOI: 10.3390/genes15121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) affect approximately 15% of children and adolescents worldwide. This group of disorders is often polygenic with varying risk factors, with many associated genes converging on shared molecular pathways, including chromatin regulation and transcriptional control. Understanding how NDD-associated chromatin regulators and protein complexes orchestrate these regulatory pathways is crucial for elucidating NDD pathogenesis and developing targeted therapeutic strategies. Recently, the TCF20/PHF14 chromatin complex was identified in the mammalian brain, expanding the list of chromatin regulatory remodelers implicated in NDDs. This complex-which includes MeCP2, RAI1, TCF20, PHF14, and HMG20A-plays a vital role in epigenetic and transcriptional regulation. METHODS We review and summarize current research and clinical reports pertaining to the different components of the MeCP2-interacting TCF20/PHF14 complex. We examine the NDDs associated with the TCF20/PHF14 complex, explore the molecular and neuronal functions of its components, and discuss emerging therapeutic strategies targeting this complex to mitigate symptoms, with broader applicability to other NDDs. RESULTS Mutations in the genes encoding the components of the MeCP2-interacting TCF20/PHF14 complex have been linked to various NDDs, underscoring its critical contribution to brain development and NDD pathogenesis. CONCLUSIONS The MeCP2-interacting TCF20/PHF14 complex and its associated NDDs could serve as a model system to provide insight into the interplay between epigenetic regulation and NDD pathogenesis.
Collapse
Affiliation(s)
- Gaea Dominguez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (G.D.); (Y.W.)
| | - Yongji Wu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (G.D.); (Y.W.)
| | - Jian Zhou
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (G.D.); (Y.W.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Srividhya D, Parambath SV, Sathyanarayanan R, Huligerepura Sosalegowda A, Korlimarla A, Niranjana Murthy AS, Prabhakaran N, Vijayanand M, Gowda NKC. Whole Exome Sequencing of a Multiplex Family of Indian Origin Identifies Variants in the RAI1 and FLII Genes within the 17p11.2 Region in Siblings with Autism and Smith Magenis Syndrome. Mol Syndromol 2024; 15:537-544. [PMID: 39634244 PMCID: PMC11614432 DOI: 10.1159/000539400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/16/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterized by restrictive repetitive behavior and impairment in social and communication skills. They are extremely heterogeneous with a strong genetic preponderance. They are clinically highly convoluted, presenting with multiple comorbid conditions and syndromic features. More than 100 genes have been identified to date. Method Whole exome sequencing (WES) has emerged as a valuable tool in evaluating the genetic underpinnings of ASDs, be it the syndromic or the idiopathic variants. In the current study, we performed WES on a multiplex family of Indian origin to investigate the disease etiology in the siblings (S1 [Female] and S2 [Male]) exhibiting ASD syndromic features, at both clinical and genetic aspects. Results Exome sequencing identified a missense variant (NM_030665.4:c.5320C>T; p.Arg1774Trp) in S1 resulting in RAI1 haploinsufficiency. Validation by Sanger sequencing confirmed that the variant was true positive and maternally transmitted in the subject. Likewise, we report an inherited missense variant at the same locus (17p11.2) corresponding to the FLII gene (NM_002018.4:c.2030A>C; p.Glu677Ala) in the other sibling, S2. Both the variants were reported in the Smith Magenis syndrome (SMS) critical region justifying their contribution to the presentation of the syndromic SMS features. These WES findings were consistent with the clinical findings that imply SMS features in both siblings. Conclusion The current study employed WES to provide insights into the genetic complexity associated with syndromic ASD and how that contributes to the disease heterogeneity. Moving forward, combinatorial approaches and findings from syndromic ASDs can potentially act as indicators to understand the genetic and phenotypic variations seen in idiopathic ASD.
Collapse
Affiliation(s)
- Durbagula Srividhya
- Department of Studies in Biotechnology, University of Mysore, Mysore, India
- St. John's Medical College, Bangalore, India
| | - Snijesh Valiya Parambath
- St. John's Medical College, Bangalore, India
- Department of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Science, Bangalore, India
| | - Ranganayaki Sathyanarayanan
- St. John's Medical College, Bangalore, India
- Centre for Advance Research and Excellence in Autism and Developmental Disorders (CAREADD), St. John's Research Institute, St. John's National Academy of Health Science, Bangalore, India
| | | | - Aruna Korlimarla
- Centre for Advance Research and Excellence in Autism and Developmental Disorders (CAREADD), St. John's Research Institute, St. John's National Academy of Health Science, Bangalore, India
- Department of Research, Sri Shankara Cancer Hospital and Research Center, Bangalore, India
| | - Ashitha S Niranjana Murthy
- St. John's Medical College, Bangalore, India
- Centre for Advance Research and Excellence in Autism and Developmental Disorders (CAREADD), St. John's Research Institute, St. John's National Academy of Health Science, Bangalore, India
| | - Nishanth Prabhakaran
- St. John's Medical College, Bangalore, India
- Centre for Advance Research and Excellence in Autism and Developmental Disorders (CAREADD), St. John's Research Institute, St. John's National Academy of Health Science, Bangalore, India
| | - Meghana Vijayanand
- St. John's Medical College, Bangalore, India
- Department of Psychiatry, St. John's National Academy of Health Science, Bangalore, India
| | - Naveen Kumar Chandappa Gowda
- St. John's Medical College, Bangalore, India
- Centre for Advance Research and Excellence in Autism and Developmental Disorders (CAREADD), St. John's Research Institute, St. John's National Academy of Health Science, Bangalore, India
| |
Collapse
|
3
|
Korteling D, Musch JLI, Zinkstok JR, Boot E. Psychiatric and neurological manifestations in adults with Smith-Magenis syndrome: A scoping review. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32956. [PMID: 37584268 DOI: 10.1002/ajmg.b.32956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/20/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder caused by a 17p11.2 deletion or a pathogenic variant of the RAI1 gene, which lies within the 17p11.2 region. Various psychiatric and neurological disorders have been reported in SMS, with most literature focusing on children and adolescents. To provide an overview of the current knowledge on this topic in adults with SMS, we performed a comprehensive scoping review of the relevant literature. Our findings suggest that many manifestations that are common in childhood persist into adulthood. Neuropsychiatric manifestations in adults with SMS include intellectual disability, autism spectrum- and attention deficit hyperactivity disorder-related features, self-injurious and physical aggressive behaviors, sleep-wake disorders, and seizures. Findings of this review may facilitate optimization of management strategies in adults with SMS, and may guide future studies exploring late-onset psychiatric and neurological comorbidities in SMS.
Collapse
Affiliation(s)
- Dorinde Korteling
- Child and Adolescent Psychiatry & Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Janneke R Zinkstok
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry, Nijmegen, The Netherlands
- Department of Psychiatry and Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erik Boot
- Advisium, 's Heeren Loo, Amersfoort, The Netherlands
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Javed S, Chang YT, Cho Y, Lee YJ, Chang HC, Haque M, Lin YC, Huang WH. Smith-Magenis syndrome protein RAI1 regulates body weight homeostasis through hypothalamic BDNF-producing neurons and neurotrophin downstream signalling. eLife 2023; 12:RP90333. [PMID: 37956053 PMCID: PMC10642964 DOI: 10.7554/elife.90333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Retinoic acid-induced 1 (RAI1) haploinsufficiency causes Smith-Magenis syndrome (SMS), a genetic disorder with symptoms including hyperphagia, hyperlipidemia, severe obesity, and autism phenotypes. RAI1 is a transcriptional regulator with a pan-neural expression pattern and hundreds of downstream targets. The mechanisms linking neural Rai1 to body weight regulation remain unclear. Here we find that hypothalamic brain-derived neurotrophic factor (BDNF) and its downstream signalling are disrupted in SMS (Rai1+/-) mice. Selective Rai1 loss from all BDNF-producing cells or from BDNF-producing neurons in the paraventricular nucleus of the hypothalamus (PVH) induced obesity in mice. Electrophysiological recordings revealed that Rai1 ablation decreased the intrinsic excitability of PVHBDNF neurons. Chronic treatment of SMS mice with LM22A-4 engages neurotrophin downstream signalling and delayed obesity onset. This treatment also partially rescued disrupted lipid profiles, insulin intolerance, and stereotypical repetitive behaviour in SMS mice. These data argue that RAI1 regulates body weight and metabolic function through hypothalamic BDNF-producing neurons and that targeting neurotrophin downstream signalling might improve associated SMS phenotypes.
Collapse
Affiliation(s)
- Sehrish Javed
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Ya-Ting Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Yoobin Cho
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Yu-Ju Lee
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Hao-Cheng Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Minza Haque
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Yu Cheng Lin
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Wei-Hsiang Huang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| |
Collapse
|
5
|
Ghafouri-Fard S, Pourtavakoli A, Hussen BM, Taheri M, Ayatollahi SA. A Review on the Role of Genetic Mutations in the Autism Spectrum Disorder. Mol Neurobiol 2023; 60:5256-5272. [PMID: 37278883 DOI: 10.1007/s12035-023-03405-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
Autism spectrum disorder (ASD) is among the most widespread neurodevelopmental diseases, with an approximate prevalence rate of 1 in 59. From a genetic point of view, this disorder is highly heterogeneous. This disorder is associated with both inheritable and de novo mutations in several genes. In addition to genetic loci that are identified through early karyotype analyses, recent advent of high throughput sequencing methods has facilitated identification of several genetic loci that confer risk of ASD. The current review provides an overview of different types of identified mutations including missense and nonsense mutations and copy number variations in various genes in individuals affected with ASD.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Pourtavakoli
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
6
|
Kuroda Y, Ritter A, Mullegama SV, Izumi K. Mosaic RAI1 variant in a Smith-Magenis syndrome patient with total anomalous pulmonary venous return. Am J Med Genet A 2022; 188:3130-3134. [PMID: 35833697 DOI: 10.1002/ajmg.a.62907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Yukiko Kuroda
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alyssa Ritter
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Kosuke Izumi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Garayzábal E, Hidalgo I, Miranda de Souza ALD, da Silva NC, Giacheti CM, Pinato L. Sleep disturbances and behavior in Smith-Magenis syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2022; 128:104286. [PMID: 35779287 DOI: 10.1016/j.ridd.2022.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Smith-Magenis syndrome (SMS) shows a collection of neurodevelopmental problems including mild to moderate intellectual disability, change-related anxiety, impulsivity, speech delay, Attention-Deficit/Hyperactivity Disorder (ADH) and sleep disturbances. Sleep disorders, when present, have been treated in several populations with consecutive improvements in cognitive and behavioral aspects. AIMS To better understand the existing relationships between sleep disturbances and behavioral problems in SMS syndrome this study describes the sleep and behavior problems in the SMS and explores the possible relation between both. METHODS AND PROCEDURES 17 individuals with SMS (50% males; 11.2 ± 4.9 years old) and 12 individuals with typical development (50% male; 11.1 ± 4.4 years old) were investigated using the Sleep Disturbance Scale for Children and the Child Behavior Checklist. RESULTS A high percentage (60%) of individuals with SMS have an indication of sleep disorders, being the most frequent disorders the sleep-wake transition disorders, and disorders of initiating and maintaining sleep with sleep latency higher than acceptable and total sleep time below acceptable. More than 94% of the SMS group presented clinical or borderline scores on the total behavioral problems scale. The most common behavioral problems were Externalizing Problems, Thought and Attention, ADH and Aggressive problems. There was a positive correlation between disorders of initiating and maintaining sleep, sleep-wake transition disorders, disorders of arousal, disorders of excessive somnolence and behavioral problems. CONCLUSIONS AND IMPLICATIONS The worse the sleep disturbances investigated, the more severe the behavioral problems characteristics reinforcing the importance to address the sleep problems in the treatment of SMS individuals.
Collapse
Affiliation(s)
- Elena Garayzábal
- Departamento de Lingüística General, Facultad de Filosofía y Letras, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Irene Hidalgo
- Departamento de Filología Española, Facultad de Filosofía y Letras, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Facultad de Ciencias de la Salud, Universidad de Castilla La Mancha, 45600 Talavera de la Reina, Spain; Centro Universitario de Educación Superior (CUNIMAD), 28040 Madrid, Spain.
| | | | - Nathani Cristina da Silva
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marilia, SP, Brazil.
| | - Celia Maria Giacheti
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marilia, SP, Brazil.
| | - Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marilia, SP, Brazil.
| |
Collapse
|
8
|
Gandhi AA, Wilson TA, Sisley S, Elsea SH, Foster RH. Relationships between food-related behaviors, obesity, and medication use in individuals with Smith-Magenis syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2022; 127:104257. [PMID: 35597045 DOI: 10.1016/j.ridd.2022.104257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/01/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Smith-Magenis syndrome (SMS) is a complex neurodevelopmental disorder that includes obesity and food-seeking/satiety-related behaviors. AIMS This study examined associations between food-related/hyperphagic behaviors, weight, and medication use in individuals with SMS. METHODS/PROCEDURES Caregivers of individuals with SMS in the Parents and Researchers Interested in SMS (PRISMS) Patient Registry completed a demographic/medication questionnaire, the Hyperphagia Questionnaire for Clinical Trials, and the Food Related Problems Questionnaire. OUTCOMES/RESULTS Among 49 participants (Mage = 16.41 ± 12.73 years, range = 4-69 years, 55% girls/women), individuals with SMS with overweight/obesity (n = 22) had worse overall food-related problems including greater impaired satiety (p < 0.05), maladaptive eating behaviors (p < 0.05), inappropriate response (p < 0.01), and hyperphagia (p < 0.01) compared to individuals of normal/underweight (n = 27). Those taking anti-depressants/anxiolytics (n = 16) had greater maladaptive eating behaviors (p < 0.05), hyperphagic behaviors (p < 0.05), and hyperphagic severity (p < 0.05) than those not taking anti-depressants/anxiolytics (n = 33). Boys/men with SMS had greater maladaptive eating behaviors (p < 0.05), inappropriate response (p < 0.05), and hyperphagic drive (p < 0.01) than girls/women with SMS. CONCLUSIONS/IMPLICATIONS Maladaptive food-related behaviors were higher in individuals with SMS with overweight/obesity, taking anti-depressants/anxiolytics, or who were male. Medications in this population should be chosen with weight-related side effects in mind.
Collapse
Affiliation(s)
- Anusha A Gandhi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Theresa A Wilson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephanie Sisley
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Children's Nutrition Research Center, Houston, TX 77030, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Rebecca H Foster
- Department of Psychology, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Krgovic D, Gorenjak M, Rihar N, Opalic I, Stangler Herodez S, Gregoric Kumperscak H, Dovc P, Kokalj Vokac N. Impaired Neurodevelopmental Genes in Slovenian Autistic Children Elucidate the Comorbidity of Autism With Other Developmental Disorders. Front Mol Neurosci 2022; 15:912671. [PMID: 35813072 PMCID: PMC9259896 DOI: 10.3389/fnmol.2022.912671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorders (ASD) represent a phenotypically heterogeneous group of patients that strongly intertwine with other neurodevelopmental disorders (NDDs), with genetics playing a significant role in their etiology. Whole exome sequencing (WES) has become predominant in molecular diagnostics for ASD by considerably increasing the diagnostic yield. However, the proportion of undiagnosed patients still remains high due to complex clinical presentation, reduced penetrance, and lack of segregation analysis or clinical information. Thus, reverse phenotyping, where we first identified a possible genetic cause and then determine its clinical relevance, has been shown to be a more efficient approach. WES was performed on 147 Slovenian pediatric patients with suspected ASD. Data analysis was focused on identifying ultrarare or “single event” variants in ASD-associated genes and further expanded to NDD-associated genes. Protein function and gene prioritization were performed on detected clinically relevant variants to determine their role in ASD etiology and phenotype. Reverse phenotyping revealed a pathogenic or likely pathogenic variant in ASD-associated genes in 20.4% of patients, with subsequent segregation analysis indicating that 14 were de novo variants and 1 was presumed compound heterozygous. The diagnostic yield was further increased by 2.7% by the analysis of ultrarare or “single event” variants in all NDD-associated genes. Protein function analysis established that genes in which variants of unknown significance (VUS) were detected were predominantly the cause of intellectual disability (ID), and in most cases, features of ASD as well. Using such an approach, variants in rarely described ASD-associated genes, such as SIN3B, NR4A2, and GRIA1, were detected. By expanding the analysis to include functionally similar NDD genes, variants in KCNK9, GNE, and other genes were identified. These would probably have been missed by classic genotype–phenotype analysis. Our study thus demonstrates that in patients with ASD, analysis of ultrarare or “single event” variants obtained using WES with the inclusion of functionally similar genes and reverse phenotyping obtained a higher diagnostic yield despite limited clinical data. The present study also demonstrates that most of the causative genes in our cohort were involved in the syndromic form of ASD and confirms their comorbidity with other developmental disorders.
Collapse
Affiliation(s)
- Danijela Krgovic
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
- Department of Molecular Biology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- *Correspondence: Danijela Krgovic,
| | - Mario Gorenjak
- Centre for Human Molecular Genetics, and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Nika Rihar
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Iva Opalic
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
| | - Spela Stangler Herodez
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
- Department of Molecular Biology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Peter Dovc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nadja Kokalj Vokac
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
- Department of Molecular Biology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
10
|
Reay WR, Cairns MJ. The role of the retinoids in schizophrenia: genomic and clinical perspectives. Mol Psychiatry 2020; 25:706-718. [PMID: 31666680 PMCID: PMC7156347 DOI: 10.1038/s41380-019-0566-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Signalling by retinoid compounds is vital for embryonic development, with particular importance for neurogenesis in the human brain. Retinoids, metabolites of vitamin A, exert influence over the expression of thousands of transcripts genome wide, and thus, act as master regulators of many important biological processes. A significant body of evidence in the literature now supports dysregulation of the retinoid system as being involved in the aetiology of schizophrenia. This includes mechanistic insights from large-scale genomic, transcriptomic and, proteomic studies, which implicate disruption of disparate aspects of retinoid biology such as transport, metabolism, and signalling. As a result, retinoids may present a valuable clinical opportunity in schizophrenia via novel pharmacotherapies and dietary intervention. Further work, however, is required to expand on the largely observational data collected thus far and confirm causality. This review will highlight the fundamentals of retinoid biology and examine the evidence for retinoid dysregulation in schizophrenia.
Collapse
Affiliation(s)
- William R. Reay
- 0000 0000 8831 109Xgrid.266842.cSchool of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW Australia ,grid.413648.cCentre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW Australia
| | - Murray J. Cairns
- 0000 0000 8831 109Xgrid.266842.cSchool of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW Australia ,grid.413648.cCentre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW Australia
| |
Collapse
|
11
|
Identification of De Novo JAK2 and MAPK7 Mutations Related to Autism Spectrum Disorder Using Whole-Exome Sequencing in a Chinese Child and Adolescent Trio-Based Sample. J Mol Neurosci 2019; 70:219-229. [PMID: 31838722 PMCID: PMC7018782 DOI: 10.1007/s12031-019-01456-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high phenotypic and genetic heterogeneity. Whole-exome sequencing studies have shown that de novo single-nucleotide variations (SNVs) play an important role in sporadic ASD. The present study aimed to search for de novo SNVs using whole-exome sequencing in 59 unrelated Chinese ASD sporadic trios, and found 24 genes (including five reported ASD candidate genes CACNA1D, ACHE, YY1, TTN, and FBXO11) with de novo harmful SNVs. Five genes (CACNA1D, JAK2, ACHE, MAPK7, and PRKAG2) classified as “medium-confidence” genes were found to be related to ASD using the Phenolyzer gene analysis tool, which predicts the correlation between the candidate genes and the ASD phenotype. De novo SNVs in JAK2, MAPK7, and PRKAG2 were first found in ASD. Both JAK2 and MAPK7 were involved in the regulation of the MAPK signaling pathway. Gene co-expression and inter-gene interaction networks were constructed and gene expression data in different brain regions were further extracted, revealing that JAK2 and MAPK7 genes were associated with certain previously reported ASD genes and played an important role in early brain development. The findings of this study suggest that the aforementioned five reported ASD genes and JAK2 and MAPK7 may be related to ASD susceptibility. Further investigations of expression studies in cellular and animal models are needed to explore the mechanism underlying the involvement of JAK2 and MAPK7 in ASD.
Collapse
|