1
|
Leonarski E, Cesca K, de Oliveira D, Zielinski AAF, Mateus N, de Freitas V, Oliveira H, Cruz L. Enzymatic fatty acid acylation of cyanidin-3-O-glucoside extracted from black rice bran: thermostability, lipophilicity, cytotoxicity and absorption studies. Food Chem 2025; 484:144353. [PMID: 40252446 DOI: 10.1016/j.foodchem.2025.144353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Lipophilization technique has been a promising alternative to reduce anthocyanin's chemical instability and to increase their lipid affinity. Enzymatic acylation of cyanidin-3-O-glucoside (C3G) extracted from black rice bran was optimized towards the fatty acid donor, solvent, enzyme concentration, and temperature parameters. The most promising lipophilic conjugate (C3G-C8) was obtained with 53 % yield at 60 °C, 15 g/L enzyme in acetonitrile:DMSO (10:1). Regarding the thermostability, an increase in the half-life time for C3G-C8 at different pH values (3, 5, and 7) compared to C3G was observed. The octanol-water partition coefficients confirmed its superior lipophilicity (log P = 1.37) compared to its precursor (log P = -1.59). No cytotoxicity was observed for both compounds at concentrations up to 200 μM for NCI-N87 cells and Caco-2:HT29-MTX coculture. Both anthocyanins presented similar transepithelial transport efficiency using the coculture (about 1.2 %). Overall, C3G-C8 showed higher affinity than its precursor for application in lipid-based products.
Collapse
Affiliation(s)
- Eduardo Leonarski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Karina Cesca
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Acácio A F Zielinski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Nuno Mateus
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Hélder Oliveira
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Luís Cruz
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.
| |
Collapse
|
2
|
Gao L, Sun H, Nagassa M, Li X, Pei H, Liu S, Gu Y, He S. Edible film preparation by anthocyanin extract addition into acetylated cassava starch/sodium carboxymethyl cellulose matrix for oxidation inhibition of pumpkin seeds. Int J Biol Macromol 2024; 267:131439. [PMID: 38593902 DOI: 10.1016/j.ijbiomac.2024.131439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
In this study, an edible film was fabricated by incorporating anthocyanin extract from black rice (AEBR) into acetylated cassava starch (ACS)/carboxymethyl-cellulose (CMC) to enhance the shelf life of pumpkin seeds. The effects of AEBR on the rheological properties of film-forming solutions, as well as the structural characterization and physicochemical properties of the film, were evaluated. Rheological properties of solutions revealed that AEBR was evenly dispersed into polymer matrix and bound by hydrogen bonds, as confirmed by Fourier transform infrared spectroscopy analysis. The appropriate AEBR addition could be compatible with polymer matrix and formed a compact film structure, improving the mechanical properties, barrier properties, and opacity. However, with further addition of AEBR, the tensile strength and water vapor permeability decreased and the tight structure was destroyed. After being stored separately under thermal and UV light accelerated conditions for 20 days, the peroxide value and acid value of roasted pumpkin seeds coated with the AEBR film showed a significant reduction. Moreover, the storage stability of AEBR was improved through the embedding of ACS/CMC biopolymers. These results indicated that AEBR film could effectively delay pumpkin seeds oxidation and prolong their shelf life as an antioxidant material.
Collapse
Affiliation(s)
- Lingyan Gao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China.
| | - Merga Nagassa
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Xiao Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Hui Pei
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Shuyun Liu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Yingying Gu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China.
| |
Collapse
|
3
|
Berga M, Logviss K, Lauberte L, Paulausks A, Mohylyuk V. Flavonoids in the Spotlight: Bridging the Gap between Physicochemical Properties and Formulation Strategies. Pharmaceuticals (Basel) 2023; 16:1407. [PMID: 37895878 PMCID: PMC10610233 DOI: 10.3390/ph16101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Flavonoids are hydroxylated polyphenols that are widely distributed in plants with diverse health benefits. Despite their popularity, the bioavailability of flavonoids is often overlooked, impacting their efficacy and the comparison of products. The study discusses the bioavailability-related physicochemical properties of flavonoids, with a focus on the poorly soluble compounds commonly found in dietary supplements and herbal products. This review sums up the values of pKa, log P, solubility, permeability, and melting temperature of flavonoids. Experimental and calculated data were compiled for various flavonoid subclasses, revealing variations in their physicochemical properties. The investigation highlights the challenges posed by poorly soluble flavonoids and underscores the need for enabling formulation approaches to enhance their bioavailability and therapeutic potential. Compared to aglycones, flavonoid glycosides (with sugar moieties) tend to be more hydrophilic. Most of the reviewed aglycones and glycosides exhibit relatively low log P and high melting points, making them "brick dust" candidates. To improve solubility and absorption, strategies like size reduction, the potential use of solid dispersions and carriers, as well as lipid-based formulations have been discussed.
Collapse
Affiliation(s)
| | | | | | | | - Valentyn Mohylyuk
- Laboratory of Finished Dosage Forms, Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia
| |
Collapse
|
4
|
Yañez-Apam J, Domínguez-Uscanga A, Herrera-González A, Contreras J, Mojica L, Mahady G, Luna-Vital DA. Pharmacological Activities and Chemical Stability of Natural and Enzymatically Acylated Anthocyanins: A Comparative Review. Pharmaceuticals (Basel) 2023; 16:ph16050638. [PMID: 37242421 DOI: 10.3390/ph16050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Anthocyanins (ANCs) are naturally occurring water-soluble pigments responsible for conferring red, blue, and purple colors to fruits, vegetables, flowers, and grains. Due to their chemical structure, they are highly susceptible to degradation by external factors, such as pH, light, temperature, and oxygen. Naturally acylated anthocyanins have proven to be more stable in response to external factors and exhibit superior biological effects as compared with their non-acylated analogues. Therefore, synthetic acylation represents a viable alternative to make the application of these compounds more suitable for use. Enzyme-mediated synthetic acylation produces derivatives that are highly similar to those obtained through the natural acylation process, with the main difference between these two pathways being the catalytic site of the enzymes involved in the synthesis; acyltransferases catalyze natural acylation, while lipases catalyze synthetic acylation. In both cases, their active sites perform the addition of carbon chains to the hydroxyl groups of anthocyanin glycosyl moieties. Currently, there is no comparative information regarding natural and enzymatically acylated anthocyanins. In this sense, the aim of this review is to compare natural and enzyme-mediated synthetic acylated anthocyanins in terms of chemical stability and pharmacological activity with a focus on inflammation and diabetes.
Collapse
Affiliation(s)
- Jimena Yañez-Apam
- Tecnologico de Monterrey, School of Engineering and Science, Ave., 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave., 2501, Monterrey 64849, Mexico
| | - Astrid Domínguez-Uscanga
- Tecnologico de Monterrey, School of Engineering and Science, Ave., 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave., 2501, Monterrey 64849, Mexico
| | - Azucena Herrera-González
- Department of Chemical Engineering, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd., Gral., Marcelino García Barragán 1421, Guadalajara 44430, Mexico
| | - Jonhatan Contreras
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C.-Unidad Zapopan, Camino Arenero 1227, Zapopan 45019, Mexico
| | - Luis Mojica
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C.-Unidad Zapopan, Camino Arenero 1227, Zapopan 45019, Mexico
| | - Gail Mahady
- Clinical Pharmacognosy Laboratory, Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, 833 South Wood St., Chicago, IL 60612, USA
| | - Diego A Luna-Vital
- Tecnologico de Monterrey, School of Engineering and Science, Ave., 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave., 2501, Monterrey 64849, Mexico
| |
Collapse
|
5
|
Effect of the Enzymatic Treatment of Phenolic-Rich Pigments from Purple Corn (Zea mays L.): Evaluation of Thermal Stability and Alpha-Glucosidase Inhibition. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
6
|
Li L, Zhou P, Wang Y, Pan Y, Chen M, Tian Y, Zhou H, Yang B, Meng H, Zheng J. Antimicrobial activity of cyanidin-3-O-glucoside-lauric acid ester against Staphylococcus aureus and Escherichia coli. Food Chem 2022; 383:132410. [PMID: 35182879 DOI: 10.1016/j.foodchem.2022.132410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/16/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
Enzymatic acylation of anthocyanin with fatty acid improves its lipophilic solubility and application potential. Nevertheless, evaluation of functional properties of product is premise for application. This study investigated the antimicrobial potential and the underlying mechanisms of an acylated anthocyanin, namely, cyanidin-3-O-glucoside-lauric acid ester (C3G-LA), to provide guidelines for its application. C3G-LA exhibited outstanding antibacterial activity against Staphylococcus aureus [minimum inhibitory concentration (MIC) = 0.3125 mg/mL] and modest activity against Escherichia coli (MIC = 5 mg/mL). Moreover, C3G-LA manifested bactericide ability against S. aureus at 0.625 mg/mL. Decreases in membrane integrity (by 96% and 92% at MIC in S. aureus and E. coli, respectively), intracellular ATP concentration (by 96% and 92%) and intracellular pH (by 11% and 9%) and changes in cellular morphology altogether indicated the dysfunction of cell membrane under C3G-LA treatment. These findings demonstrated that C3G-LA could be adopted as an alternative food preservative against foodborne pathogens.
Collapse
Affiliation(s)
- Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ping Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China; InnoStar Bio-Tech Nantong Site, Nantong 226133, Jiangsu, China
| | - Yidi Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Ying Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Min Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ye Tian
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, Turku FI-20014, Finland
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Baoru Yang
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, Turku FI-20014, Finland
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China; Zhongshan Hongli Health Food Industry Research Institute Co., Ltd, Zhongshan 528400, Guangdong, China.
| |
Collapse
|
7
|
Wang M, Zhang Z, Sun H, He S, Liu S, Zhang T, Wang L, Ma G. Research progress of anthocyanin prebiotic activity: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154145. [PMID: 35567994 DOI: 10.1016/j.phymed.2022.154145] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Anthocyanins are a kind of flavonoids and natural water-soluble pigments, which endow fruits, vegetables, and plants with multiple colors. They are important source of new products with prebiotic activity. However, there is no systematic review documenting prebiotic activity of anthocyanins and their structural analogues. This study aims to fill this gap in literature. PURPOSE The objective of this review is to summarize and evaluate the prebiotic activity of anthocyanin's, and discuss the physical and molecular modification methods to improve their biological activities. STUDY DESIGN AND METHODS In this review, the databases (PubMed, Google Scholar, Web of Science, Researchgate and Elsevier) were searched profoundly with keywords (anthocyanin's, prebiotics, probiotics, physical embedding and molecular modification). RESULTS A total of 34 articles were considered for reviewing. These studies approved that anthocyanins play an important role in promoting the proliferation of probiotics, inhibiting the growth of harmful bacteria and improving the intestinal environment. In addition, physical embedding and molecular modification have also been proved to be effective methods to improve the prebiotic activity of anthocyanins. Anthocyanins could promote the production of short chain fatty acids, accelerate self degradation and improve microbial related enzyme activities to promote the proliferation of probiotics. They inhibited the growth of harmful bacteria by inhibiting the expression of harmful bacteria genes, interfering with the role of metabolism related enzymes and affecting respiratory metabolism. They promoted the formation of a complete intestinal barrier and regulated the intestinal environment to keep the body healthy. Physical embedding, including microencapsulation and colloidal embedding, greatly improved the stability of anthocyanins. On the other hand, molecular modification, especially enzymatic modification, significantly improved the biological activities (antioxidant, prebiotic activity and so on) of anthocyanins. CONCLUSION All these research results displayed by this review indicate that anthocyanins are a useful tool for developing prebiotic products. The better activities of the new anthocyanins formed by embedding and modification may make them become more effective raw materials. Our review provides a scientific basis for the future research and application of anthocyanins.
Collapse
Affiliation(s)
- Muwen Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Zuoyong Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Hanju Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China.
| | - Shudong He
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China.
| | - Shuyun Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Tao Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Gang Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| |
Collapse
|
8
|
Wang C, Xu Y, Yu B, Xiao A, Su Y, Guo H, Zhang H, Zhang L. Analysis of Sour Porridge Microbiota and Improvement of Cooking Quality via Pure Culture Fermentation Using Lacticaseibacillus paracasei Strain SZ02. Front Microbiol 2021; 12:712189. [PMID: 34512590 PMCID: PMC8428527 DOI: 10.3389/fmicb.2021.712189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
The microbial composition of sour porridge at different fermentation times was analyzed through high-throughput sequencing, and a pure culture fermentation process was established to optimize production process and improve the edible quality of the porridge. In natural fermentation, Firmicutes and Proteobacteria were abundant throughout the process. Specifically, Aeromonas, Acinetobacter, and Klebsiella were dominant on fermentation days 1–5 (groups NF-1, NF-3, and NF-5), while Lactobacillus and Acetobacter gradually became the dominant bacteria on fermentation day 7 (group NF-7). Further, we isolated one strain of acid-producing bacteria from sour porridge, identified as Lacticaseibacillus paracasei by 16SrRNA sequencing and annotated as strain SZ02. Pure culture fermentation using this strain significantly increased the relative starch and amylose contents of the porridge, while decreasing the lipid, protein, and ash contents (P < 0.05). These findings suggest that sour porridge produced using strain SZ02 has superior edible qualities and this strategy may be exploited for its industrial production.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Yunhe Xu
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Bin Yu
- Department of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Aibo Xiao
- Liaoning Agricultural Development Service Center, Shenyang, China
| | - Yuhong Su
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Haonan Guo
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Huajiang Zhang
- Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Lili Zhang
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
9
|
Yang X, Sun H, Tu L, Jin Y, Wang M, Liu S, Zhang Z, He S. Investigation of acute, subacute and subchronic toxicities of anthocyanin derived acylation reaction products and evaluation of their antioxidant activities in vitro. Food Funct 2020; 11:10954-10967. [PMID: 33283810 DOI: 10.1039/d0fo01478h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previously, anthocyanins were successfully acylated with lauric acid using Novozym 435 lipase, and the corresponding products were confirmed to have higher stability. As novel synthetic compounds, their toxicological safety has not been evaluated. Therefore, acute, subacute and subchronic toxicities of anthocyanin-lauric acid derivatives (ALDs) were investigated while their antioxidant activities were also evaluated in vitro. The acute toxicity results showed that the 50% lethal dose (LD50) of ALDs in mice was >10 g kg-1. Subsequently, the subacute toxicity test was conducted by oral administration of ALDs at doses of 0.63, 1.25 and 2.50 g kg-1 for 28 days. No adverse effect of ALDs on body weight, food/water intake, organ coefficient and histology was observed. Though there were some fluctuations in AST and ALT, the tested biochemical parameters were maintained within the normal ranges. The subchronic toxicity test results demonstrated that less than 0.60 g of ALDs per kg BW intake did not affect mortality, body weight, food/water intake, gross pathology, histology, hematology and serum biochemistry. Furthermore, cyanidin-3-(6''-dodecanoyl)-glucoside, the main component of ALDs, had a beneficial reducing power and a strong DPPH˙, ABTS+˙, and O2-˙ scavenging activity. This study provides an imperative reference to the safety of ALDs, suggesting their application as novel colorants or antioxidants in food and therapeutics.
Collapse
Affiliation(s)
- Xi Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | | | | | | | | | | | | | | |
Collapse
|