1
|
Zendedel E, Tayebi L, Nikbakht M, Hasanzadeh E, Asadpour S. Clinical Trials of Mesenchymal Stem Cells for the Treatment of COVID 19. Curr Stem Cell Res Ther 2024; 19:1055-1071. [PMID: 37815188 DOI: 10.2174/011574888x260032230925052240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 10/11/2023]
Abstract
Mesenchymal Stem Cells (MSCs) are being investigated as a treatment for a novel viral disease owing to their immunomodulatory, anti-inflammatory, tissue repair and regeneration characteristics, however, the exact processes are unknown. MSC therapy was found to be effective in lowering immune system overactivation and increasing endogenous healing after SARS-CoV-2 infection by improving the pulmonary microenvironment. Many studies on mesenchymal stem cells have been undertaken concurrently, and we may help speed up the effectiveness of these studies by collecting and statistically analyzing data from them. Based on clinical trial information found on clinicaltrials. gov and on 16 November 2020, which includes 63 clinical trials in the field of patient treatment with COVID-19 using MSCs, according to the trend of increasing studies in this field, and with the help of meta-analysis studies, it is possible to hope that the promise of MSCs will one day be realized. The potential therapeutic applications of MSCs for COVID-19 are investigated in this study.
Collapse
Affiliation(s)
- Elham Zendedel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Lobat Tayebi
- Marquett University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Mohammad Nikbakht
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
Coronavirus Disease 2019 (COVID-19). BIOLOGY 2022; 11:biology11081250. [PMID: 36009877 PMCID: PMC9404726 DOI: 10.3390/biology11081250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
|
3
|
Singh V, Prasad A, Panda PK, Totaganti M, Tyagi AK, Thaduri A, Rao S, Bairwa M, Singh AK. Mixed invasive fungal infections among COVID-19 patients. Curr Med Mycol 2021; 7:19-27. [PMID: 35747732 PMCID: PMC9175149 DOI: 10.18502/cmm.7.4.8407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 01/08/2022] [Indexed: 01/09/2023] Open
Abstract
Background and Purpose The healthcare system in India collapsed during the second wave of the COVID-19 pandemic. A fungal epidemic was announced amid the pandemic with several cases of COVID-associated mucormycosis and pulmonary aspergillosis being reported. However, there is limited data regarding mixed fungal infections in COVID-19 patients. Therefore, we present a series of ten consecutive COVID-19 patients with mixed invasive fungal infections (MIFIs). Materials and Methods Among COVID-19 patients hospitalized in May 2021 at a tertiary care center in North India, 10 cases of microbiologically confirmed COVID-19-associated mucormycosis-aspergillosis (CAMA) were evaluated. Results All patients had diabetes and the majority of them were infected with severe COVID-19 pneumonia (6/10, 60%) either on admission or in the past month while two were each of moderate (20%) and mild (20%) categories of COVID-19; and were treated with steroid and cocktail therapy. The patients were managed with amphotericin-B along with surgical intervention. In total, 70% of all CAMA patients (Rhizopus arrhizus with Aspergillus flavus in seven and Aspergillus fumigatus complex in three patients) survived. Conclusion The study findings reflected the critical importance of a high index of clinical suspicion and accurate microbiological diagnosis in managing invasive dual molds and better understanding of the risk and progression of MIFIs among COVID-19 patients. Careful scrutiny and identification of MIFIs play a key role in the implementation of effective management strategies.
Collapse
Affiliation(s)
- Vanya Singh
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Amber Prasad
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Prasan Kumar Panda
- Department of Internal Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Manjunath Totaganti
- Department of Internal Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Amit Kumar Tyagi
- Department of ENT, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Abhinav Thaduri
- Department of ENT, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Shalinee Rao
- Department of Pathology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Mukesh Bairwa
- Department of Internal Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ashok Kumar Singh
- Department of Pathology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| |
Collapse
|
4
|
Chakrabarty K, Shetty R, Argulwar S, Das D, Ghosh A. Induced pluripotent stem cell-based disease modeling and prospective immune therapy for coronavirus disease 2019. Cytotherapy 2021; 24:235-248. [PMID: 34656419 PMCID: PMC8437760 DOI: 10.1016/j.jcyt.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 11/30/2022]
Abstract
The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses a never before seen challenge to human health and the economy. Considering its clinical impact, with no streamlined therapeutic strategies in sight, it is crucial to understand the infection process of SARS-CoV-2. Our limited knowledge of the mechanisms underlying SARS-CoV-2 infection impedes the development of alternative therapeutics to address the pandemic. This aspect can be addressed by modeling SARS-CoV-2 infection in the human context to facilitate drug screening and discovery. Human induced pluripotent stem cell (iPSC)-derived lung epithelial cells and organoids recapitulating the features and functionality of the alveolar cell types can serve as an in vitro human model and screening platform for SARS-CoV-2. Recent studies suggest an immune system asynchrony leading to compromised function and a decreased proportion of specific immune cell types in coronavirus disease 2019 (COVID-19) patients. Replenishing these specific immune cells may serve as useful treatment modality against SARS-CoV-2 infection. Here the authors review protocols for deriving lung epithelial cells, alveolar organoids and specific immune cell types, such as T lymphocytes and natural killer cells, from iPSCs with the aim to aid investigators in making relevant in vitro models of SARS-CoV-2 along with the possibility derive immune cell types to treat COVID-19.
Collapse
Affiliation(s)
| | - Rohit Shetty
- Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Shubham Argulwar
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Debashish Das
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| |
Collapse
|
5
|
Fiorillo L, Meto A, Cicciù F, De Stefano R. An Eventual Sars-CoV-2 Infection Prevention Protocol in the Medical Setting and Dental Office. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2593. [PMID: 33807646 PMCID: PMC7967356 DOI: 10.3390/ijerph18052593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
The current Coronavirus disease 2019 (COVID-19) pandemic has affected the entire world population, and in particular the medical-health field, especially dentistry [...].
Collapse
Affiliation(s)
- Luca Fiorillo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, School of Dentistry, University of Messina, Policlinico G. Martino, Via Consolare Valeria, 98100 Messina, Italy
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy
| | - Aida Meto
- Department of Dental Therapy, Faculty of Dental Medicine, University of Medicine, 1005 Tirana, Albania;
| | - Francesca Cicciù
- Unità Operativa di Patologia Clinica, ARNAS Garibaldi Centro, 95123 Catania, Italy;
| | - Rosa De Stefano
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy;
| |
Collapse
|
6
|
Ma H, Lim XC, Yu Q, Li Y, Li Y, Jia W. Ratios between circulating myeloid cells and lymphocytes are associated with mortality in severe COVID-19 patients. Open Med (Wars) 2021. [DOI: 10.1515/med-2021-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Recent studies indicate that host immune responses are dysregulated with either myeloid cell compartment or lymphocyte composition being disturbed in COVID-19. This study aimed to assess the impact of SARS-CoV-2 viral infection on the composition of circulating immune cells in severe COVID-19 patients. In this retrospective single-center cohort, 71 out of 87 COVID-19 patients admitted to the intense care unit for oxygen treatment were included in this study. Demographics, clinical features, comorbidities, and laboratory findings were collected on admission. Out of the 71 patients, 5 died from COVID-19. Compared with survived patients, deceased patients showed higher blood cell counts of neutrophils and monocytes but lower cell counts of lymphocytes. Intriguingly, the neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and basophil-to-lymphocyte ratio (BLR) were markedly higher in deceased patients compared to survived patients. Furthermore, the lymphocyte counts were negatively correlated with D-dimer levels, while the ratios between myeloid cells and lymphocyte (NLR, MLR, and BLR) were positively correlated with D-dimer levels. Our findings revealed that the ratios between myeloid cells and lymphocytes were highly correlated with coagulation status and patient mortality in severe COVID-19.
Collapse
Affiliation(s)
- Hui Ma
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital , Tianjin , China
| | - Xiong Chang Lim
- Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Qihong Yu
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital , Tianjin , China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital , Tianjin , China
| | - Yuechuan Li
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital , Tianjin , China
| | - Wei Jia
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital , No. 261, Taierzhuangnan Road, Jinnan District , Tianjin , 300222 , China
| |
Collapse
|