1
|
Chikamoto N, Fujimoto K, Nakai J, Totani Y, Hatakeyama D, Ito E. Expression Level Changes in Serotonin Transporter are Associated with Food Deprivation in the Pond Snail Lymnaea stagnalis. Zoolog Sci 2023; 40:382-389. [PMID: 37818887 DOI: 10.2108/zs230027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/21/2023] [Indexed: 10/13/2023]
Abstract
In the pond snail Lymnaea stagnalis, serotonin (5-HT) plays an important role in feeding behavior and its associated learning (e.g., conditioned taste aversion: CTA). The 5-HT content in the central nervous system (CNS) fluctuates with changes in the nutritional status, but it is also expected to be influenced by changes in the serotonin transporter (SERT) expression level. In the present study, we identified SERT in Lymnaea and observed its localization in 5-HTergic neurons, including the cerebral giant cells (CGCs) in the cerebral ganglia and the pedal A cluster neurons and right and left pedal dorsal 1 neurons in the pedal ganglia by in situ hybridization. Real-time PCR revealed that the SERT mRNA expression level was lower under severe food deprivation than under mild food deprivation in the whole CNS as well as in a single CGC. These results inversely correlated with previous data that the 5-HT content in the CNS was higher in the severely food-deprived state than in the mildly food-deprived state. Furthermore, in single CGCs, we observed that the 5-HT level was significantly increased in the severely food-deprived state compared with the mildly food-deprived state. Our present findings suggest that changes in the SERT expression level associated with food deprivation may affect 5-HT signaling, probably contributing to learning and memory mechanisms in Lymnaea.
Collapse
Affiliation(s)
- Nozomi Chikamoto
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Kanta Fujimoto
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Junko Nakai
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Yuki Totani
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan,
| |
Collapse
|
2
|
Chikamoto N, Fujimoto K, Nakai J, Namiki K, Hatakeyama D, Ito E. Genes Upregulated by Operant Conditioning of Escape Behavior in the Pond Snail Lymnaea stagnalis. Zoolog Sci 2023; 40:375-381. [PMID: 37818886 DOI: 10.2108/zs230032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/13/2023] [Indexed: 10/13/2023]
Abstract
The pond snail Lymnaea stagnalis is capable of learning by both classical conditioning and operant conditioning. Although operant conditioning related to escape behavior with punishment has been examined by some research groups, the molecular mechanisms are not known. In the present study, we examined changes in the expression levels of cAMP-response element binding protein 1 (CREB1), CREB2, CREB-binding protein (CBP), and monoamine oxidase (MAO) in the Lymnaea central nervous system (CNS) using real-time PCR following operant conditioning of escape behavior. CREB1 and CREB2 are transcription factors involved in long-term memory in Lymnaea; CBP is a coactivator with CREB1; and MAO is a degrading enzyme for monoamines (e.g., serotonin) with important roles in learning and memory in Lymnaea. In operant conditioning, the punishment cohort, in which snails escaping from the container encountered aversive KCl, exhibited significantly fewer escape attempts than the control cohort, in which snails escaping from the container encountered distilled water, during both the training and memory test periods. After the operant conditioning, CREB1 and CREB2 were upregulated, and the ratio of CREB1/CREB2 was also increased, suggesting that the operant conditioning of escape behavior involves these factors. MAO was also upregulated, suggesting that the content of monoamines such as serotonin in the CNS decreased. The upregulated genes identified in the present study will help to further elucidate learning and memory mechanisms in Lymnaea.
Collapse
Affiliation(s)
- Nozomi Chikamoto
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Kanta Fujimoto
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Junko Nakai
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Kengo Namiki
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan,
| |
Collapse
|
3
|
Nakai J, Namiki K, Fujimoto K, Hatakeyama D, Ito E. FOXO in Lymnaea: Its Probable Involvement in Memory Consolidation. BIOLOGY 2023; 12:1201. [PMID: 37759600 PMCID: PMC10525164 DOI: 10.3390/biology12091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Food deprivation activates forkhead box O (FOXO), a transcription factor downstream of insulin receptors. In the pond snail Lymnaea stagnalis, insulin signaling and food deprivation improve memory consolidation following conditioned taste aversion (CTA) learning. We investigated the subcellular localization of FOXO in Lymnaea and changes in its expression levels following food deprivation, CTA learning, and insulin administration. Immunohistochemistry revealed that Lymnaea FOXO (LymFOXO) was located in the central nervous system (CNS) neuronal cytoplasm in food-satiated snails but was mainly in neuronal nuclei in food-deprived snails. Following CTA acquisition, LymFOXO translocated to the nuclei in food-satiated snails and remained in the nuclei in food-deprived snails. Contrary to our expectations, insulin administered to the CNS did not induce LymFOXO translocation into the nuclei in food-satiated snails. Real-time PCR was used to quantify LymFOXO mRNA levels, its target genes, and insulin signaling pathway genes and revealed that LymFOXO mRNA was upregulated in food-deprived snails compared to food-satiated snails. Insulin applied to isolated CNSs from food-satiated snails increased LymFOXO compared to vehicle-treated samples. Food deprivation prepares FOXO to function in the nucleus and enhances CTA learning in snails. Insulin application did not directly affect LymFOXO protein localization. Thus, insulin administration may stimulate pathways other than the LymFOXO cascade.
Collapse
Affiliation(s)
- Junko Nakai
- Department Biology, Waseda University, Tokyo 162-8480, Japan; (J.N.); (K.N.); (K.F.)
| | - Kengo Namiki
- Department Biology, Waseda University, Tokyo 162-8480, Japan; (J.N.); (K.N.); (K.F.)
| | - Kanta Fujimoto
- Department Biology, Waseda University, Tokyo 162-8480, Japan; (J.N.); (K.N.); (K.F.)
| | - Dai Hatakeyama
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan;
| | - Etsuro Ito
- Department Biology, Waseda University, Tokyo 162-8480, Japan; (J.N.); (K.N.); (K.F.)
| |
Collapse
|
4
|
Totani Y, Nakai J, Hatakeyama D, Dyakonova VE, Lukowiak K, Ito E. CNS serotonin content mediating food deprivation-enhanced learning is regulated by hemolymph tryptophan concentration and autophagic flux in the pond snail. Nutr Neurosci 2023; 26:217-227. [PMID: 35156560 DOI: 10.1080/1028415x.2022.2033045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nutritional status affects cognitive function in many types of organisms. In the pond snail Lymnaea stagnalis, 1 day of food deprivation enhances taste aversion learning ability by decreasing the serotonin (5-hydroxytryptamin; 5-HT) content in the central nervous system (CNS). On the other hand, after 5 days of food deprivation, learning ability and the CNS 5-HT concentration return to basal levels. How food deprivation leads to alterations of 5-HT levels in the CNS, however, is unknown. Here, we measured the concentration of the 5-HT precursor tryptophan in the hemolymph and CNS, and demonstrated that the CNS tryptophan concentration was higher in 5-day food-deprived snails than in non-food-deprived or 1-day food-deprived snails, whereas the hemolymph tryptophan concentration was not affected by the duration of food deprivation. This finding suggests the existence of a mediator of the CNS tryptophan concentration independent of food deprivation. To identify the mediator, we investigated autophagic flux in the CNS under different food deprivation conditions. We found that autophagic flux was significantly upregulated by inhibition of the tropomyosin receptor kinase (Trk)-Akt-mechanistic target of rapamycin complex 1 (MTORC1) pathway in the CNS of 5-day food-deprived snails. Moreover, when autophagy was inhibited, the CNS 5-HT content was significantly downregulated in 5-day food-deprived snails. Our results suggest that the hemolymph tryptophan concentration and autophagic flux in the CNS cooperatively regulate learning ability affected by different durations of food deprivation. This mechanism may underlie the selection of behaviors appropriate for animal survival depending on the degree of nutrition.
Collapse
Affiliation(s)
- Yuki Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - Junko Nakai
- Department of Biology, Waseda University, Tokyo, Japan
| | - Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Varvara E Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, AB, Canada
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan.,Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Hatakeyama D, Chikamoto N, Fujimoto K, Kitahashi T, Ito E. Comparison between relative and absolute quantitative real-time PCR applied to single-cell analyses: Transcriptional levels in a key neuron for long-term memory in the pond snail. PLoS One 2022; 17:e0279017. [PMID: 36508476 PMCID: PMC9744327 DOI: 10.1371/journal.pone.0279017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Quantitative real-time PCR (qPCR) is a powerful method for measuring nucleic acid levels and quantifying mRNA levels, even in single cells. In the present study, we compared the results of single-cell qPCR obtained by different quantification methods (relative and absolute) and different reverse transcription methods. In the experiments, we focused on the cerebral giant cell (CGC), a key neuron required for the acquisition of conditioned taste aversion in the pond snail Lymnaea stagnalis, and examined changes in the mRNA levels of 3 memory-related genes, cAMP-response element binding proteins (LymCREB1 and LymCREB2) and CREB-binding protein (LymCBP), during memory formation. The results obtained by relative quantification showed similar patterns for the 3 genes. For absolute quantification, reverse transcription was performed using 2 different methods: a mixture of oligo d(T) primers and random primers (RT method 1); and gene-specific primers (RT method 2). These methods yielded different results and did not show consistent changes related to conditioning. The mRNA levels in the samples prepared by RT method 2 were up to 3.3 times higher than those in samples prepared by RT method 1. These results suggest that for qPCR of single neurons, the efficacy and validity do not differ between relative and absolute quantification methods, but the reverse transcription step critically influences the results of mRNA quantification.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima City, Japan
- * E-mail: (DH); (EI)
| | | | | | - Takashi Kitahashi
- Kushiro Nature Conservation Office, Ministry of the Environment Government of Japan, Kushiro City, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- * E-mail: (DH); (EI)
| |
Collapse
|
6
|
Hatakeyama D, Sunada H, Totani Y, Watanabe T, Felletár I, Fitchett A, Eravci M, Anagnostopoulou A, Miki R, Okada A, Abe N, Kuzuhara T, Kemenes I, Ito E, Kemenes G. Molecular and functional characterization of an evolutionarily conserved CREB-binding protein in the Lymnaea CNS. FASEB J 2022; 36:e22593. [PMID: 36251357 PMCID: PMC9828244 DOI: 10.1096/fj.202101225rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 01/12/2023]
Abstract
In eukaryotes, CREB-binding protein (CBP), a coactivator of CREB, functions both as a platform for recruiting other components of the transcriptional machinery and as a histone acetyltransferase (HAT) that alters chromatin structure. We previously showed that the transcriptional activity of cAMP-responsive element binding protein (CREB) plays a crucial role in neuronal plasticity in the pond snail Lymnaea stagnalis. However, there is no information on the molecular structure and HAT activity of CBP in the Lymnaea central nervous system (CNS), hindering an investigation of its postulated role in long-term memory (LTM). Here, we characterize the Lymnaea CBP (LymCBP) gene and identify a conserved domain of LymCBP as a functional HAT. Like CBPs of other species, LymCBP possesses functional domains, such as the KIX domain, which is essential for interaction with CREB and was shown to regulate LTM. In-situ hybridization showed that the staining patterns of LymCBP mRNA in CNS are very similar to those of Lymnaea CREB1. A particularly strong LymCBP mRNA signal was observed in the cerebral giant cell (CGC), an identified extrinsic modulatory interneuron of the feeding circuit, the key to both appetitive and aversive LTM for taste. Biochemical experiments using the recombinant protein of the LymCBP HAT domain showed that its enzymatic activity was blocked by classical HAT inhibitors. Preincubation of the CNS with such inhibitors blocked cAMP-induced synaptic facilitation between the CGC and an identified follower motoneuron of the feeding system. Taken together, our findings suggest a role for the HAT activity of LymCBP in synaptic plasticity in the feeding circuitry.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK,Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Hiroshi Sunada
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri UniversitySanukiJapan,Present address:
Advanced Medicine, Innovation and Clinical Research CentreTottori University HospitalYonagoJapan
| | - Yuki Totani
- Department of BiologyWaseda UniversityTokyoJapan
| | | | - Ildikó Felletár
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK
| | - Adam Fitchett
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK
| | - Murat Eravci
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK
| | - Aikaterini Anagnostopoulou
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK,Present address:
School of Life SciencesUniversity of WestminsterLondonUK
| | - Ryosuke Miki
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Ayano Okada
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Naoya Abe
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Takashi Kuzuhara
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Ildikó Kemenes
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri UniversitySanukiJapan,Department of BiologyWaseda UniversityTokyoJapan
| | - György Kemenes
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK
| |
Collapse
|
7
|
Lyu H, Mizunami M. Conditioned taste aversion in the cricket Gryllus bimaculatus. Sci Rep 2022; 12:9751. [PMID: 35697908 PMCID: PMC9192700 DOI: 10.1038/s41598-022-13500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Conditioned taste aversion (CTA) is a form of classical conditioning in which animals associate the taste of a food with illness caused by toxin contained in the food. CTA in mammals is achieved with a long interval of up to several hours between food ingestion and illness induced by LiCl injection. Insects also exhibit CTA, but not much is known about its features. We investigated whether the cricket Gryllus bimaculatus exhibits CTA when ingestion of a sugar solution is followed by LiCl injection. Crickets that ingested sucrose solution 5–10 min before LiCl injection exhibited reduction of sucrose consumption tested 24 or 48 h after injection compared to that tested 24 h before injection. In contrast, crickets that ingested sucrose solution 5–10 min after LiCl injection or 1 h or 8 h before or after injection did not exhibit reduction of sucrose consumption, indicating that reduction of sucrose consumption by CTA training is pairing-specific. We conclude that CTA in crickets is similar to that in mammals in that one-trial pairing is sufficient to achieve memory retention for days, but it differs in that it is achieved with a relatively short interval (< 1 h) between food ingestion and toxin injection.
Collapse
Affiliation(s)
- Hui Lyu
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Makoto Mizunami
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
8
|
Nakai J, Chikamoto N, Fujimoto K, Totani Y, Hatakeyama D, Dyakonova VE, Ito E. Insulin and Memory in Invertebrates. Front Behav Neurosci 2022; 16:882932. [PMID: 35558436 PMCID: PMC9087806 DOI: 10.3389/fnbeh.2022.882932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Insulin and insulin-like peptides (ILP) help to maintain glucose homeostasis, whereas insulin-like growth factor (IGF) promotes the growth and differentiation of cells in both vertebrates and invertebrates. It is sometimes difficult to distinguish between ILP and IGF in invertebrates, however, because in some cases ILP has the same function as IGF. In the present review, therefore, we refer to these peptides as ILP/IGF signaling (IIS) in invertebrates, and discuss the role of IIS in memory formation after classical conditioning in invertebrates. In the arthropod Drosophila melanogaster, IIS is involved in aversive olfactory memory, and in the nematode Caenorhabditis elegans, IIS controls appetitive/aversive response to NaCl depending on the duration of starvation. In the mollusk Lymnaea stagnalis, IIS has a critical role in conditioned taste aversion. Insulin in mammals is also known to play an important role in cognitive function, and many studies in humans have focused on insulin as a potential treatment for Alzheimer’s disease. Although analyses of tissue and cellular levels have progressed in mammals, the molecular mechanisms, such as transcriptional and translational levels, of IIS function in cognition have been far advanced in studies using invertebrates. We anticipate that the present review will help to pave the way for studying the effects of insulin, ILPs, and IGFs in cognitive function across phyla.
Collapse
Affiliation(s)
- Junko Nakai
- Department of Biology, Waseda University, Tokyo, Japan
| | | | | | - Yuki Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - Dai Hatakeyama
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Varvara E. Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Etsuro Ito
| |
Collapse
|
9
|
Gietzen DW. Brain Signaling of Indispensable Amino Acid Deficiency. J Clin Med 2021; 11:191. [PMID: 35011932 PMCID: PMC8745678 DOI: 10.3390/jcm11010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Our health requires continual protein synthesis for maintaining and repairing tissues. For protein synthesis to function, all the essential (indispensable) amino acids (IAAs) must be available in the diet, along with those AAs that the cells can synthesize (the dispensable amino acids). Here we review studies that have shown the location of the detector for IAA deficiency in the brain, specifically for recognition of IAA deficient diets (IAAD diets) in the anterior piriform cortex (APC), with subsequent responses in downstream brain areas. The APC is highly excitable, which makes is uniquely suited to serve as an alarm for reductions in IAAs. With a balanced diet, these neurons are kept from over-excitation by GABAergic inhibitory neurons. Because several transporters and receptors on the GABAergic neurons have rapid turnover times, they rely on intact protein synthesis to function. When an IAA is missing, its unique tRNA cannot be charged. This activates the enzyme General Control Nonderepressible 2 (GCN2) that is important in the initiation phase of protein synthesis. Without the inhibitory control supplied by GABAergic neurons, excitation in the circuitry is free to signal an urgent alarm. Studies in rodents have shown rapid recognition of IAA deficiency by quick rejection of the IAAD diet.
Collapse
Affiliation(s)
- Dorothy W Gietzen
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|