1
|
Li Z, Yao L, Saravanakumar K, Thuy NTT, Kim Y, Xue C, Zheng X, Cho N. Lespedeza bicolor root extract exerts anti-TNBC potential by regulating FAK-related signalling pathways. Am J Cancer Res 2024; 14:4265-4285. [PMID: 39417178 PMCID: PMC11477838 DOI: 10.62347/mypg4066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Lespedeza bicolor is a shrub plant that has been widely distributed in East Asia. The methanol extract from its LBR has been shown to exhibit anticancer and anti-bacterial effects. However, its anticancer efficacy in TNBC remains uncertain. This work aimed to study the anti-TNBC effect of LBR ethanol extract and its underlying mechanism. LBR triggered the cell death in TNBC through inhibiting cell proliferation, S-phase cell arrest, and induction of apoptosis. RNA-seq analysis revealed that the genes altered by LBR treatment were predominantly enriched in the cell adhesion. Notably, LBR inhibited phosphorylation and distribution of FAK. Furthermore, LBR demonstrated significant anticancer activity in xenograft tumors in mice through inhibiting cancer cell growth and inducing apoptosis. This work demonstrated the anticancer efficiency of LBR in TNBC without causing significant adverse effect, which providing a foundation for developing LBR based chemotherapeutic agents for breast cancer therapy.
Collapse
Affiliation(s)
- Zijun Li
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| | - Lulu Yao
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| | - Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| | - Nguyen Thi Thanh Thuy
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| | - Yunyeong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| | - Chang Xue
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| | - Xiaohui Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University1210 University Town, Wenzhou 325035, Zhejiang, China
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| |
Collapse
|
2
|
Xi Y, Kim S, Nguyen TTT, Lee PJ, Zheng J, Lin Z, Cho N. 2-Geranyl-1-methoxyerythrabyssin II alleviates lipid accumulation and inflammation in hepatocytes through AMPK activation and AKT inhibition. Arch Pharm Res 2023; 46:808-824. [PMID: 37782374 DOI: 10.1007/s12272-023-01464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
A growing proportion of the global adult and pediatric populations are currently affected by nonalcoholic steatohepatitis (NASH), leading to rising rates of liver fibrosis and hepatocellular carcinoma without effective pharmacotherapy. Here, we investigated whether 2-geranyl-1-methoxyerythrabyssin II (GMET), isolated from Lespedeza bicolor, could alleviate lipid accumulation and inflammatory responses in a NASH model. GMET exhibited potent in vitro and in vivo effects against lipid accumulation and attenuated inflammatory responses without cytotoxicity. Mechanistically, GMET inhibits acetyl-CoA carboxylase (ACC), sterol regulatory element-binding proteins-1c (SREBP1), and mammalian target of rapamycin (mTOR), and activates PPARα by activating AMP-activated kinase (AMPK), leading to the alleviation of lipid accumulation. In addition, GMET suppresses the NF-κB pathway by activating AMPK and inhibiting the activated protein kinase B (AKT)/IκB-kinase (IKK) pathway, leading to the inhibition of the inflammatory response in hepatocytes. All these protective effects of GMET on lipid accumulation and inflammation in vivo and in vitro were largely abolished by co-treatment with dorsomorphin, an AMPK inhibitor. In conclusion, GMET alleviated lipid accumulation and inflammation to preserve normal hepatocyte function in steatohepatitis. Thus, GMET is a novel potential multi-targeting compound to improve steatohepatitis.
Collapse
Affiliation(s)
- Yiyuan Xi
- The Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Soeun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
| | - Thi Thanh Thuy Nguyen
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
| | - Phil Jun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
| | - Jujia Zheng
- The Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhuofeng Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea.
| |
Collapse
|
3
|
Pokhilo ND, Tarbeeva DV, Grigorchuk VP, Starnovskaya SS, Gorovoy PG, Fedoreyev SA. Flavonoid Glycosides from the Aerial Part of Lespedeza hedysaroides. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-03939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
4
|
Sun X, Xin S, Zhang Y, Jin L, Liu X, Zhang J, Mei W, Zhang B, Ma W, Ye L. Long non‑coding RNA CASC11 interacts with YBX1 to promote prostate cancer progression by suppressing the p53 pathway. Int J Oncol 2022; 61:110. [PMID: 35904175 PMCID: PMC9374466 DOI: 10.3892/ijo.2022.5400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Prostate cancer (PCa) is one of the principal causes of cancer‑related death worldwide. The roles and mechanisms of long non‑coding RNA (lncRNA) involved in the development of PCa remain incompletely understood. The present study aimed to investigate the role and mechanism of lncRNA in PCa tumorigenesis. In the present study, lncRNA cancer susceptibility candidate 11 (CASC11) was revealed to be a crucial regulator of PCa progression. The expression profiles of CASC11 in PCa were identified through analysis of The Cancer Genome Atlas and Gene Expression Omnibus datasets, and validated in human PCa specimens and cell lines. Gain‑ and loss‑of‑function assays were utilized to explore the biological role of CASC11 in PCa initiation and progression. RNA‑sequencing, RNA pull‑down and RNA immunoprecipitation analyses were used to explore potential mechanisms with which CASC11 may be associated. Rescue experiments were further conducted to confirm this association. The present results revealed that CASC11 was dominantly distributed in the nuclei of PCa cells, and was highly expressed in PCa tissues and cells. Overexpression of CASC11 was markedly associated with increased tumor proliferation and migratory ability. Functionally, decreased proliferation and migration, as well as inhibited xenograft tumor growth, were observed in CASC11‑silenced PCa cells, whereas the opposite effects were detected in CASC11‑overexpressing cells. Mechanistically, CASC11 promoted progression of the cell cycle and competitively interacted with Y‑box binding protein 1 (YBX1) to block the p53 pathway. Given this, poly (β‑amino ester) (PBAE)/small interfering RNA‑CASC11 (si‑CASC11) nanoparticles were applied to inhibit CASC11 expression and enhance the antitumor effect in vivo. The results revealed that PBAE/si‑CASC11 nanoparticles augmented the antitumor efficacy of CASC11 knockdown in vivo. In conclusion, the present study suggested that CASC11 may regulate PCa progression and elucidated a novel CASC11/YBX1/p53 signaling axis, providing a potential lncRNA‑directed therapeutic strategy particularly for the treatment of patients with PCa.
Collapse
Affiliation(s)
- Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| | - Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liang Jin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| | - Xiang Liu
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| | - Jiaxin Zhang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| | - Wangli Mei
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| | - Bihui Zhang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| | - Weiguo Ma
- Department of Urology, Tongxin People's Hospital, Tongxin, Ningxia 751300, P.R. China
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China
| |
Collapse
|
5
|
Zhong AB, Muti IH, Eyles SJ, Vachet RW, Sikora KN, Bobst CE, Calligaris D, Stopka SA, Agar JN, Wu CL, Mino-Kenudson MA, Agar NYR, Christiani DC, Kaltashov IA, Cheng LL. Multiplatform Metabolomics Studies of Human Cancers With NMR and Mass Spectrometry Imaging. Front Mol Biosci 2022; 9:785232. [PMID: 35463966 PMCID: PMC9024335 DOI: 10.3389/fmolb.2022.785232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022] Open
Abstract
The status of metabolomics as a scientific branch has evolved from proof-of-concept to applications in science, particularly in medical research. To comprehensively evaluate disease metabolomics, multiplatform approaches of NMR combining with mass spectrometry (MS) have been investigated and reported. This mixed-methods approach allows for the exploitation of each individual technique's unique advantages to maximize results. In this article, we present our findings from combined NMR and MS imaging (MSI) analysis of human lung and prostate cancers. We further provide critical discussions of the current status of NMR and MS combined human prostate and lung cancer metabolomics studies to emphasize the enhanced metabolomics ability of the multiplatform approach.
Collapse
Affiliation(s)
- Anya B. Zhong
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Isabella H. Muti
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Stephen J. Eyles
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Richard W. Vachet
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Kristen N. Sikora
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Cedric E. Bobst
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA, United States
| | - David Calligaris
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylwia A. Stopka
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeffery N. Agar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
| | - Chin-Lee Wu
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Nathalie Y. R. Agar
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
| | - David C. Christiani
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Igor A. Kaltashov
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Leo L. Cheng
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Polyphenolic Compounds from Lespedeza bicolor Protect Neuronal Cells from Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11040709. [PMID: 35453394 PMCID: PMC9025851 DOI: 10.3390/antiox11040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/10/2022] Open
Abstract
Pterocarpans and related polyphenolics are known as promising neuroprotective agents. We used models of rotenone-, paraquat-, and 6-hydroxydopamine-induced neurotoxicity to study the neuroprotective activity of polyphenolic compounds from Lespedeza bicolor and their effects on mitochondrial membrane potential. We isolated 11 polyphenolic compounds: a novel coumestan lespebicoumestan A (10) and a novel stilbenoid 5’-isoprenylbicoloketon (11) as well as three previously known pterocarpans, two pterocarpens, one coumestan, one stilbenoid, and a dimeric flavonoid. Pterocarpans 3 and 6, stilbenoid 5, and dimeric flavonoid 8 significantly increased the percentage of living cells after treatment with paraquat (PQ), but only pterocarpan 6 slightly decreased the ROS level in PQ-treated cells. Pterocarpan 3 and stilbenoid 5 were shown to effectively increase mitochondrial membrane potential in PQ-treated cells. We showed that pterocarpans 2 and 3, containing a 3’-methyl-3’-isohexenylpyran ring; pterocarpens 4 and 9, with a double bond between C-6a and C-11a; and coumestan 10 significantly increased the percentage of living cells by decreasing ROS levels in 6-OHDA-treated cells, which is in accordance with their rather high activity in DPPH• and FRAP tests. Compounds 9 and 10 effectively increased the percentage of living cells after treatment with rotenone but did not significantly decrease ROS levels.
Collapse
|
7
|
Biologically active polyphenolic compounds from Lespedeza bicolor. Fitoterapia 2022; 157:105121. [PMID: 34990769 DOI: 10.1016/j.fitote.2021.105121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/20/2022]
Abstract
We investigated the ability of six prenylated prerocarpans, stilbenoid, and a new dimeric flavonoid, lespebicolin B, from stem bark as well as two 3-O-rutinosides and a mixture of 3-O-β-D-glucosides of quercetin and kaempferol from flowers of Lespedeza bicolor to inhibit HSV-1 replication in Vero cells. Pretreatment of HSV-1 with polyphenolic compounds (direct virucidal effect) showed that pterocarpans lespedezol A2 (1), (6aR,11aR)-6a,11a-dihydrolespedezol A2 (2), (6aR,11aR)-2-isoprenyldihydrolespedezol A2 (4), and (6aR,11aR,3'R)-dihydrolespedezol A3 (5) significantly inhibited viral replication, with a selective index (SI) ≥10. Compound 4 possessed the lowest 50% - inhibiting concentration (IC50) and the highest SI values (2.6 μM and 27.9, respectively) in this test. (6aR,11aR)-2-Isoprenyldihydrolespedezol A2 (4) also had a moderate effect under simultaneous treatment of Vero cells with the tested compound and virus (IC50 and SI values were 5.86 μM and 12.4, respectively). 3-O-rutinosides of quercetin and kaempferol and a mixture of 3-O-β-D-glucosides of quercetin and kaempferol (10 and 12) also showed significant virucidal activity, with SI values of 12.5, 14.6, and 98.2, respectively, and IC50 values of 8.6, 12.2, and 3.6, respectively. We also performed a quantitative structure-activity relationship (QSAR) analysis of data on the virucidal activity of polyphenolics with 4 < pIC50 < 6. It was found that the virucidal activity of these compounds depended on both the structure of the aromatic part and the conformation of geranyl and isoprenyl side chains of their molecules. These findings are correlated with the largest value of the principal moment of inertia (pmi) descriptor describing the geometry of molecules.
Collapse
|
8
|
Rocio Soledad GL, Lorena Gisel C, Norailys L, Humberto L, Daniel Fernando A, Hernan Gabriel F. Yerba Mate Modulates Tumor Cells Functions Involved in Metastasis in Breast Cancer Models. Front Pharmacol 2021; 12:750197. [PMID: 34858179 PMCID: PMC8632058 DOI: 10.3389/fphar.2021.750197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC) is the most frequent cancer in women and tumor metastasis is a major cause of cancer-related deaths. Our aim was to evaluate anti-metastatic properties of yerba mate extract (YMe) in BC models. 4T1, F3II, MCF-7, and MDA-MB231 cell lines were used to perform in vitro assays. The F3II syngeneic mammary carcinoma model in BALB/c mice was used to evaluate tumor progression, BC metastasis and survival. Cells were inoculated subcutaneously into the flank for the heterotopic model and into the mammary fat pad for the orthotopic model. YMe was administered p.o. in a dose of 1.6 g/kg/day. In vitro YMe inhibited cell proliferation and reduced tumor cell adhesion, migration and invasion. These biological effects were cell-line dependent. In vivo YMe reduced tumor metastasis and increased mice survival in both models. Our preclinical results suggest that YMe could modulate tumor progression and metastasis in BC models.
Collapse
Affiliation(s)
- Garcia-Lazaro Rocio Soledad
- Molecular and Translational Oncology Center, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Caligiuri Lorena Gisel
- Molecular and Translational Oncology Center, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Lorenzo Norailys
- Molecular and Translational Oncology Center, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Lamdan Humberto
- Molecular and Translational Oncology Center, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Alonso Daniel Fernando
- Molecular and Translational Oncology Center, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Farina Hernan Gabriel
- Molecular and Translational Oncology Center, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| |
Collapse
|
9
|
Flavonoid Glycosides from the Aerial Part of Lespedeza tomentosa. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
de Oliveira LCB, Nunes HL, Ribeiro DL, do Nascimento JR, da Rocha CQ, de Syllos Cólus IM, Serpeloni JM. Aglycone flavonoid brachydin A shows selective cytotoxicity and antitumoral activity in human metastatic prostate (DU145) cancer cells. Cytotechnology 2021; 73:761-774. [PMID: 34776627 DOI: 10.1007/s10616-021-00495-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022] Open
Abstract
In prostate cancer, flavonoids possess a wide variety of anticancer effects, focused on the antioxidant/pro-oxidant activity, inactivation of the androgen receptor, cell cycle arrest, apoptosis induction, metastasis inhibition, among others. This current research investigated the antitumoral in vitro activity of Brachydin A (BrA), a dimeric flavonoid isolated from Fridericia platyphylla, in human castration-resistant prostate cancer DU145. It was compared BrA selective effects in tumor prostate DU145 cells with non-tumor prostate epithelial PNT2 cells. Cell viability experiments (resazurin, neutral red, MTT, and LDH release assays) showed that BrA was sevenfold more cytotoxic to tumor cells than non-tumor prostate cells, with IC50 values of 77.7 µM and 10.7 µM for PNT2 and DU145 cells, respectively. Furthermore, BrA induced necrosis and apoptosis (triple fluorescence staining assay) without interfering with oxidative stress (CM-H2DCFDA) in DU145 cells. Also, BrA (15.36 µM) reduced cell proliferation on clonogenic assay (DU145 cells) but no change in cell number and protein content was observed when cell growth curve assay was used. Wound healing and transwell assays were used for checking the effects of BrA on cell migration and invasion, and BrA impaired these processes in PNT2 (wound healing) and DU145 cells (transwell). Our results inspire further studies to test BrA as a novel chemotherapeutic drug and to evaluate its effects on drug-resistant metastatic cancer cells.
Collapse
Affiliation(s)
| | - Higor Lopes Nunes
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, 86057-970 Brazil
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903 Brazil
| | | | - Cláudia Quintino da Rocha
- Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís, 65080-805 Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, 86057-970 Brazil
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, 86057-970 Brazil.,Laboratório de Mutagênese e Oncogenética, Departamento de Biologia Geral, Universidade Estadual de Londrina - UEL, Rodovia Celso Garcia Cid - PR 445 Km 380 Cx. Postal 10.011 - Campus Universitário, Londrina, PR CEP: 86057-970 Brazil
| |
Collapse
|
11
|
Keshav P, Goyal DK, Kaur S. Antileishmanial potential of immunomodulator gallic acid against experimental murine visceral leishmaniasis. Parasite Immunol 2021; 43:e12875. [PMID: 34347892 DOI: 10.1111/pim.12875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022]
Abstract
The menace of the enfeebling disease leishmaniasis prevails due to the inaccessibility of effective vaccine and chemotherapy. Hence in the pursuit of finding novel alternative options with reasonable efficacy, immunomodulation, leishmanicidal activity and fewer side effects, screening of compounds from natural sources is needed. This study was focused on in vitro and in vivo antileishmanial screening of gallic acid (GA) against Leishmania donovani infection in BALB/c mice. GA showed in vitro parasiticidal activity and IC50 value of 19.59 ± 0.74 µg/ml and is able to arrest cell cycle at the sub-G0/G1 phase. The therapeutic potential of gallic acid was assessed in the L. donovani-infected BALB/c mice. GA reported a reduction in parasite burden and augmentation of CD4+ and CD8+ T lymphocytes. Also, the polarization of mouse immune status to protective Th1 response was evidenced by increased delayed-type hypersensitivity response and levels of IgG2a, reactive oxygen species and nitric oxide. GA was reported to be safe and non-toxic to human cell line THP-1 and also to the liver and kidney of mice. Hence, the findings of the present study indicate the possible role of GA in the strengthening of host immune system and thus facilitating the clearance of leishmanial infection and conferring protection.
Collapse
Affiliation(s)
- Poonam Keshav
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, India
| | - Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, India
| |
Collapse
|
12
|
Echeverria V, Echeverria F, Barreto GE, Echeverría J, Mendoza C. Estrogenic Plants: to Prevent Neurodegeneration and Memory Loss and Other Symptoms in Women After Menopause. Front Pharmacol 2021; 12:644103. [PMID: 34093183 PMCID: PMC8172769 DOI: 10.3389/fphar.2021.644103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, Unites States
| | | | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
| |
Collapse
|
13
|
Javed Z, Khan K, Rasheed A, Sadia H, Raza S, Salehi B, Cho WC, Sharifi-Rad J, Koch W, Kukula-Koch W, Głowniak-Lipa A, Helon P. MicroRNAs and Natural Compounds Mediated Regulation of TGF Signaling in Prostate Cancer. Front Pharmacol 2021; 11:613464. [PMID: 33584291 PMCID: PMC7873640 DOI: 10.3389/fphar.2020.613464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer (PCa) is with rising incidence in male population globally. It is a complex anomaly orchestrated by a plethora of cellular processes. Transforming growth factor-beta (TGF-β) signaling is one of the key signaling pathways involved in the tumorigenesis of PCa. TGF-β signaling has a dual role in the PCa, making it difficult to find a suitable therapeutic option. MicroRNAs (miRNAs) mediated regulation of TGF-β signaling is responsible for the TGF-ß paradox. These are small molecules that modulate the expression of target genes and regulate cancer progression. Thus, miRNAs interaction with different signaling cascades is of great attention for devising new diagnostic and therapeutic options for PCa. Natural compounds have been extensively studied due to their high efficacy and low cytotoxicity. Here, we discuss the involvement of TGF-ß signaling in PCa with the interplay between miRNAs and TGF-β signaling and also review the role of natural compounds for the development of new therapeutics for PCa.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amna Rasheed
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | | | - Anna Głowniak-Lipa
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Rzeszów, Poland
| | - Paweł Helon
- Branch in Sandomierz, Jan Kochanowski University in Kielce, Sandomierz, Poland
| |
Collapse
|
14
|
Yuan XL, Li XQ, Xu K, Hou XD, Zhang ZF, Xue L, Liu XM, Zhang P. Transcriptome Profiling and Cytological Assessments for Identifying Regulatory Pathways Associated With Diorcinol N-Induced Autophagy in A3 Cells. Front Pharmacol 2020; 11:570450. [PMID: 33178020 PMCID: PMC7593552 DOI: 10.3389/fphar.2020.570450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Fungal secondary metabolites serve as a rich resource for exploring lead compounds with medicinal importance. Diorcinol N (DN), a fungal secondary metabolite isolated from an endophytic fungus, Arthrinium arundinis, exhibits robust anticancer activity. However, the anticancer mechanism of DN remains unclear. In this study, we examined the growth-inhibitory effect of DN on different human cancer cell lines. We found that DN decreased the viability of A3 T-cell leukemia cells in a time- and concentration-dependent manner. Transcriptome analysis indicated that DN modulated the transcriptome of A3 cells. In total, 9,340 differentially expressed genes were found, among which 4,378 downregulated genes and 4,962 upregulated genes were mainly involved in autophagy, cell cycle, and DNA replication. Furthermore, we demonstrated that DN induced autophagy, cell cycle arrest in the G1/S phase, and downregulated the expression of autophagy- and cell cycle-related genes in A3 cells. By labeling A3 cells with acridine orange/ethidium bromide, Hoechst 33,258, and monodansylcadaverine and via transmission electron microscopy, we found that DN increased plasma membrane permeability, structural disorganization, vacuolation, and autophagosome formation. Our study provides evidence for the mechanism of anticancer activity of DN in T-cell leukemia (A3) cells and demonstrates the promise of DN as a lead or even candidate molecule for the treatment of acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Xiao-Long Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiu-Qi Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kuo Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiao-Dong Hou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhong-Feng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lin Xue
- Wannan Tobacco Group Company Limited, Xuancheng, China
| | - Xin-Min Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Peng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|