1
|
Chatterjee P, Brahma S, Cresswell P, Bandyopadhyay S. CD1d-iNKT Axis in Infectious Diseases: Lessons Learned From the Past. Scand J Immunol 2025; 101:e70024. [PMID: 40243400 DOI: 10.1111/sji.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
CD1d is an antigen-presenting molecule that presents lipid or glycolipid antigens to iNKT cells, a distinct subset of T lymphocytes characterised by their innate-like properties and restricted use of Vα, Jα and Vβ segments. The CD1d-iNKT axis represents an interesting aspect of the immune system with significant potential for therapeutic interventions against infectious diseases. Upon recognition of lipid antigens, iNKT cells initiate rapid and potent immune responses, releasing a diverse array of cytokines such as IL-4, IL-13, IFN-γ etc. that profoundly influence immune reactions against various pathogens, including bacteria and parasites, bridging innate and adaptive immunity. We identify and describe the key features of lipidic antigens and their derivatives that determine the nature of their antigenicity. Furthermore, modulating CD1d-driven iNKT cell responses by an array of lipid and glycolipid antigens holds promise as adjunctive therapy to existing antimicrobial treatments. Understanding the complexities of the CD1d-iNKT axis and exploiting its therapeutic potential in the case of infectious diseases could lead to innovative immunotherapeutic strategies, ushering in a new era of immunotherapy against pathogenic insults.
Collapse
Affiliation(s)
- Priyajit Chatterjee
- University Science Instrument Centre, The University of Burdwan, Burdwan, West Bengal, India
| | - Shubhranil Brahma
- Department of Zoology, Iswar Chandra Vidyasagar College, Belonia, South Tripura, Tripura, India
| | - Peter Cresswell
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
2
|
Lai ACY, González-Cuesta M, Ho CH, Chi PY, Wu KC, Rocha G, Muñoz-García JC, Angulo J, García Fernández JM, Chang YJ, Ortiz Mellet C. α-GalCer sp 2-iminoglycolipid analogs as CD1d-dependent iNKT modulators: Evaluation of their immunotherapeutic potential in murine models of asthma and autoimmune hepatitis. Eur J Med Chem 2025; 282:117060. [PMID: 39561498 DOI: 10.1016/j.ejmech.2024.117060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Invariant natural killer T (iNKT) cells are a subset of innate T cells displaying powerful immunomodulatory functions. Despite extensive preclinical research on the use of iNKT agonist and antagonist for various diseases, translating these findings into successful clinical applications has proven challenging, leaving no approved treatments to date. Efforts to optimize therapeutic outcomes by developing alternative glycolipids to α-galactosylceramide (α-GalCer or KRN7000), the prototypical iNKT antigen, have shown improved preclinical results. However, significant obstacles remain, including the relatively laborious synthesis of α-glycosides and their vulnerability to degradation by α-glycosidases. To overcome these limitations, we explored the use of sp2-iminosugars, a class of glycomimetics, to replace the carbohydrate moiety in α-GalCer-like glycolipids. This substitution offers enhanced biostability and precise control over α-selectivity in glycosylation reactions. The resulting sp2-iminoglycolipids (sp2-IGLs) were tested for their immunomodulatory effects, demonstrating the ability to bind the α-GalCer binding site on the CD1d protein in antigen-presenting cells (APCs), and functioning as iNKT antagonists in α-GalCer-stimulated splenocytes. Notably, analogs featuring a 4-alkyl-1,2,3-aminotriazol-1-yl segment in place of the C25N-acyl tail in α-GalCer additionally exhibited mild agonistic activity in the absence of α-GalCer stimulation. Computational studies support the formation of stable CD1d- sp2-IGL and CD1d - sp2-IGL - T-cell receptor complexes, with significant differences in the dynamics depending on the glycone nature and lipid tail length. These findings provide a molecular rationale for the observed experimental data. Furthermore, in vivo studies using murine models of asthma and autoimmune hepatitis have identified promising sp2-IGL candidates for further development in immunotherapy.
Collapse
Affiliation(s)
- Alan Chuan-Ying Lai
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, E-41012, Seville, Spain
| | - Chieh-Hsin Ho
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Po-Yu Chi
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Ko-Chien Wu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Gabriel Rocha
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092, Sevilla, Spain
| | - Juan C Muñoz-García
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092, Sevilla, Spain
| | - Jesús Angulo
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092, Sevilla, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092, Sevilla, Spain
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan; Institute of Microbiology and Immunology, National Defense University, Taipei, 114, Taiwan; Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, 404, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, E-41012, Seville, Spain.
| |
Collapse
|
3
|
Lee MS, Webb TJ. Novel lipid antigens for NKT cells in cancer. Front Immunol 2023; 14:1173375. [PMID: 37908366 PMCID: PMC10613688 DOI: 10.3389/fimmu.2023.1173375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer immunotherapy aims to unleash the power of the immune system against tumors without the side effects of traditional chemotherapy. Immunotherapeutic methods vary widely, but all follow the same basic principle: overcome the barriers utilized by cancers to avoid immune destruction. These approaches often revolve around classical T cells, such as with CAR T cells and neoantigen vaccines; however, the utility of the innate-like iNKT cell in cancer immunotherapy has gained significant recognition. iNKT cells parallel classic T cell recognition of peptide antigens presented on MHC through their recognition of lipid antigens presented on the MHC I-like molecule CD1d. Altered metabolism and a lipogenic phenotype are essential properties of tumor cells, representing a unique feature that may be exploited by iNKT cells. In this review, we will cover properties of iNKT cells, CD1d, and lipid antigen presentation. Next, we will discuss the cancer lipidome and how it may be exploited by iNKT cells through a window of opportunity. Finally, we will review, in detail, novel lipid antigens for iNKT cells in cancer.
Collapse
Affiliation(s)
- Michael S. Lee
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tonya J. Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Zheng Q, Xue C, Gu X, Shan D, Chu Q, Wang J, Zhu H, Chen Z. Multi-Omics Characterizes the Effects and Mechanisms of CD1d in Nonalcoholic Fatty Liver Disease Development. Front Cell Dev Biol 2022; 10:830702. [PMID: 35465315 PMCID: PMC9024148 DOI: 10.3389/fcell.2022.830702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a class of metabolic-associated liver diseases. Aberrant lipid consumption plays an important role in NAFLD pathogenesis. It has been shown CD1d can bind to multiple different lysophospholipids and associated with NAFLD progression. However, the mechanism of CD1d regulation in NAFLD is not completely understood. In this study, we established a NAFLD mouse model by feeding C57/BL6J mice a high-fat diet (HFD) for 24 weeks. Subsequently, we performed integrated transcriptomics and metabolomics analyses to thoroughly probe the role of CD1d in NAFLD progression. In the present study, we demonstrate that CD1d expression was significantly decreased in our murine model of NAFLD. Additionally, we show CD1d knockdown (CD1d KO) in HFD-fed wild-type (WT) mice induced NAFLD, which resulted in weight gain, exaggerated liver injury, and hepatic steatosis. We uncover the crucial roles of CD1d deficiency results in accumulated lipid accumulation. We further explored the CD1d deficiency in NAFLD regarding the transcriptional landscapes, microbiota environment, metabolomics change, and transcriptomics differences. In conclusion, our data demonstrate CD1d plays an important role in NAFLD pathogenesis and may represent a potential therapeutic target for the further therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhi Chen
- *Correspondence: Zhi Chen, ; Haihong Zhu,
| |
Collapse
|
5
|
Li N, Wang J, Zhan X. Identification of Immune-Related Gene Signatures in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. Front Immunol 2021; 12:752643. [PMID: 34887858 PMCID: PMC8649721 DOI: 10.3389/fimmu.2021.752643] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence indicates that immunotherapy helped to improve the survival and quality-of-life of patients with lung adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC) besides chemotherapy and gene targeting treatment. This study aimed to develop immune-related gene signatures in LUAD and LUSC subtypes, respectively. LUAD and LUSC samples were divided into high- and low-abundance groups of immune cell infiltration (Immunity_H and Immunity_L) based on the abundance of immune cell infiltrations. The distribution of immune cells was significantly different between the high- and low-immunity subtypes in LUAD and LUSC samples. The differentially expressed genes (DEGs) between those two groups in LUAD and LUSC contain some key immune-related genes, such as PDL1, PD1, CTLA-4, and HLA families. The DEGs were enriched in multiple immune-related pathways. Furthermore, the seven-immune-related-gene-signature (CD1B, CHRNA6, CLEC12B, CLEC17A, CLNK, INHA, and SLC14A2) prognostic model-based high- and low-risk groups were significantly associated with LUAD overall survival and clinical characteristics. The eight-immune-related-gene-signature (C4BPB, FCAMR, GRAPL, MAP1LC3C, MGC2889, TRIM55, UGT1A1, and VIPR2) prognostic model-based high- and low-risk groups were significantly associated with LUSC overall survival and clinical characteristics. The prognostic models were tested as good ones by receiver operating characteristic, principal component analysis, univariate and multivariate analysis, and nomogram. The verifications of these two immune-related-gene-signature prognostic models showed consistency in the train and test cohorts of LUAD and LUSC. In addition, patients with LUAD in the low-risk group responded better to immunotherapy than those in the high-risk group. This study revealed two reliable immune-related-gene-signature models that were significantly associated with prognosis and tumor microenvironment cell infiltration in LUAD and LUSC, respectively. Evaluation of the integrated characterization of multiple immune-related genes and pathways could help to predict the response to immunotherapy and monitor immunotherapy strategies.
Collapse
Affiliation(s)
- Na Li
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jiahong Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, Jinan, China
| |
Collapse
|