1
|
Giermasińska-Buczek K, Gawor J, Stefańczyk E, Gągała U, Żuchniewicz K, Rekosz-Burlaga H, Gromadka R, Łobocka M. Interaction of bacteriophage P1 with an epiphytic Pantoea agglomerans strain-the role of the interplay between various mobilome elements. Front Microbiol 2024; 15:1356206. [PMID: 38591037 PMCID: PMC10999674 DOI: 10.3389/fmicb.2024.1356206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
P1 is a model, temperate bacteriophage of the 94 kb genome. It can lysogenize representatives of the Enterobacterales order. In lysogens, it is maintained as a plasmid. We tested P1 interactions with the biocontrol P. agglomerans L15 strain to explore the utility of P1 in P. agglomerans genome engineering. A P1 derivative carrying the Tn9 (cmR) transposon could transfer a plasmid from Escherichia coli to the L15 cells. The L15 cells infected with this derivative formed chloramphenicol-resistant colonies. They could grow in a liquid medium with chloramphenicol after adaptation and did not contain prophage P1 but the chromosomally inserted cmR marker of P1 Tn9 (cat). The insertions were accompanied by various rearrangements upstream of the Tn9 cat gene promoter and the loss of IS1 (IS1L) from the corresponding region. Sequence analysis of the L15 strain genome revealed a chromosome and three plasmids of 0.58, 0.18, and 0.07 Mb. The largest and the smallest plasmid appeared to encode partition and replication incompatibility determinants similar to those of prophage P1, respectively. In the L15 derivatives cured of the largest plasmid, P1 with Tn9 could not replace the smallest plasmid even if selected. However, it could replace the smallest and the largest plasmid of L15 if its Tn9 IS1L sequence driving the Tn9 mobility was inactivated or if it was enriched with an immobile kanamycin resistance marker. Moreover, it could develop lytically in the L15 derivatives cured of both these plasmids. Clearly, under conditions of selection for P1, the mobility of the P1 selective marker determines whether or not the incoming P1 can outcompete the incompatible L15 resident plasmids. Our results demonstrate that P. agglomerans can serve as a host for bacteriophage P1 and can be engineered with the help of this phage. They also provide an example of how antibiotics can modify the outcome of horizontal gene transfer in natural environments. Numerous plasmids of Pantoea strains appear to contain determinants of replication or partition incompatibility with P1. Therefore, P1 with an immobile selective marker may be a tool of choice in curing these strains from the respective plasmids to facilitate their functional analysis.
Collapse
Affiliation(s)
- Katarzyna Giermasińska-Buczek
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW-WULS), Warsaw, Poland
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Jan Gawor
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Emil Stefańczyk
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Gągała
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW-WULS), Warsaw, Poland
| | - Karolina Żuchniewicz
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Hanna Rekosz-Burlaga
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW-WULS), Warsaw, Poland
| | - Robert Gromadka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Xiao H, Feng J, Peng J, Wu P, Chang Y, Li X, Wu J, Huang H, Deng H, Qiu M, Yang Y, Du B. Fuc-S-A New Ultrasonic Degraded Sulfated α-l-Fucooligosaccharide-Alleviates DSS-Inflicted Colitis through Reshaping Gut Microbiota and Modulating Host-Microbe Tryptophan Metabolism. Mar Drugs 2022; 21:md21010016. [PMID: 36662189 PMCID: PMC9863236 DOI: 10.3390/md21010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
SCOPE The dysbiosis of intestinal microecology plays an important pathogenic role in the development of inflammatory bowel disease. METHODS AND RESULTS A polysaccharide named Fuc-S, with a molecular weight of 156 kDa, was prepared by the ultrasonic degradation of fucoidan. Monosaccharide composition, FTIR, methylation, and NMR spectral analysis indicated that Fuc-S may have a backbone consisting of →3)-α-L-Fucp-(1→, →4)-α-L-Fucp-(1→ and →3, 4)-α-D-Glcp-(1→. Moreover, male C57BL/6 mice were fed three cycles of 1.8% dextran sulfate sodium (DSS) for 5 days and then water for 7 days to induce colitis. The longitudinal microbiome alterations were evaluated using 16S amplicon sequencing. In vivo assays showed that Fuc-S significantly improved clinical manifestations, colon shortening, colon injury, and colonic inflammatory cell infiltration associated with DSS-induced chronic colitis in mice. Further studies revealed that these beneficial effects were associated with the inhibition of Akt, p-38, ERK, and JNK phosphorylation in the colon tissues, regulating the structure and abundance of the gut microbiota, and modulating the host-microbe tryptophan metabolism of the mice with chronic colitis. CONCLUSION Our data confirmed the presence of glucose in the backbone of fucoidan and provided useful information that Fuc-S can be applied as an effective functional food and pharmaceutical candidate for IBD treatment.
Collapse
Affiliation(s)
- Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jinxiu Feng
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peigen Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Yaoyao Chang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xianqian Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jinhui Wu
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Haifeng Huang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Huan Deng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Miao Qiu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yuedong Yang
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
- Correspondence: (Y.Y.); (B.D.); Tel.: +86-335-8077682 (B.D.)
| | - Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
- Correspondence: (Y.Y.); (B.D.); Tel.: +86-335-8077682 (B.D.)
| |
Collapse
|
3
|
Zdorovenko EL, Kadykova AA, Shashkov AS, Varbanets LD, Bulyhina TV, Knirel YA. Lipopolysaccharide of Pantoea agglomerans 7460: O-specific polysaccharide and lipid A structures and biological activity. Carbohydr Res 2020; 496:108132. [PMID: 32861900 DOI: 10.1016/j.carres.2020.108132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 11/27/2022]
Abstract
Lipopolysaccharide (LPS) was isolated from Pantoea agglomerans 7460 cells by phenol-water extraction. Mild acid degradation allowed to separate OPS and lipid A. Lipid A was analyzed by negative-ion mode ESI MS and found to consist mainly of hexaacylated derivative containing biphosphorylated GlcN disaccharide, four 14:0 (3-OH), 18:0 and 12:0 fatty acids. The structure of the O-specific polysaccharide was established by chemical, NMR and computational methods: The LPS of Р. agglomerans 7460 showed low level of toxicity and pyrogenicity to compare with LPS of E. coli O55:B5 and pyrogenal, respectively. The ability of the modified (succinylated) LPS, which have lost its toxicity, to block the toxic effects of native LPS has been shown.
Collapse
Affiliation(s)
- Evelina L Zdorovenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia.
| | - Alexandra A Kadykova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia
| | - Alexander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia
| | - Liudmyla D Varbanets
- D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences, 154 Zabolotnoho Str., 03143, Kiev, Ukraine
| | - Tetiana V Bulyhina
- D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences, 154 Zabolotnoho Str., 03143, Kiev, Ukraine
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia
| |
Collapse
|