1
|
Kuratani Y, Matsumoto A, Shigenaga A, Miyahara K, Ekino K, Saigusa N, Ohta H, Iwata M, Ando S. Cylindracin, a Fruiting Body-Specific Protein of Cyclocybe cylindracea, Represses the Egg-Laying and Development of Caenorhabditis elegans and Drosophila melanogaster. Toxins (Basel) 2025; 17:118. [PMID: 40137891 PMCID: PMC11946224 DOI: 10.3390/toxins17030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Mushrooms are a valuable source of bioactive compounds to develop efficient, secure medicines and environmentally friendly agrochemicals. Cylindracin is a small cysteine-rich protein that is specifically expressed in the immature fruiting body of the edible mushroom Cyclocybe cylindracea. Recombinant protein (rCYL), comprising the C-terminal cysteine-rich domain of cylindracin, inhibits the hyphal growth and conidiogenesis of filamentous fungi. Here, we show that rCYL represses the egg-laying and development of Caenorhabditis elegans and Drosophila melanogaster. The feeding of rCYL at 16 µM reduced the body volume of C. elegans larvae to approximately 60% when compared to the control. At the same concentration, rCYL repressed the frequencies of pupation and emergence of D. melanogaster to 74% and 40%, respectively, when compared to the control. In virgin adult flies, feeding of rCYL at 47 µM substantially repressed the frequency of egg-laying, and the pupation and emergence of the next generation, especially for females. These inhibitory effects of rCYL gradually disappeared after ceasing the ingestion of rCYL. The use of fluorescence-labeled rCYL revealed that the protein accumulates specifically at the pharynx cuticles of C. elegans. In D. melanogaster, fluorescence-labeled rCYL was detected primarily in the midguts and to a lesser degree in the hindguts, ovaries, testes, and malpighian tubules. rCYL was stable against trypsin, chymotrypsin, and pepsin, whereas it did not inhibit proteolytic and glycolytic enzymes in vitro. rCYL oligomerized and formed amyloid-like aggregates through the binding to heparin and heparan sulfate in vitro. These results suggest that rCYL has potential as a new biocontrol agent against pests.
Collapse
Affiliation(s)
- Yamato Kuratani
- Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; (Y.K.); (K.M.); (K.E.); (N.S.); (H.O.)
| | - Akira Matsumoto
- Faculty of Medicine, Juntendo University, 1-1 Hiraka Gakuendai, Inzai 270-1606, Japan;
| | - Ayako Shigenaga
- Institute of Health and Sports Science & Medicine, Graduate School of Health and Sports Science, Juntendo University, 1-1 Hiraka Gakuendai, Inzai 270-1695, Japan;
| | - Koji Miyahara
- Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; (Y.K.); (K.M.); (K.E.); (N.S.); (H.O.)
| | - Keisuke Ekino
- Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; (Y.K.); (K.M.); (K.E.); (N.S.); (H.O.)
| | - Noriaki Saigusa
- Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; (Y.K.); (K.M.); (K.E.); (N.S.); (H.O.)
| | - Hiroto Ohta
- Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; (Y.K.); (K.M.); (K.E.); (N.S.); (H.O.)
| | - Makoto Iwata
- IMB Co., Ltd., 1070-10 Hitotsugi, Asakura 838-0065, Japan;
| | - Shoji Ando
- Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; (Y.K.); (K.M.); (K.E.); (N.S.); (H.O.)
| |
Collapse
|
2
|
de Oliveira SSS, Cherene MB, Taveira GB, de Oliveira Mello É, de Oliveira Carvalho A, Gomes VM. Plant Antimicrobial Peptides and Their Main Families and Roles: A Review of the Literature. Curr Issues Mol Biol 2024; 47:1. [PMID: 39852116 PMCID: PMC11840293 DOI: 10.3390/cimb47010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
Antimicrobial peptides (AMPs) are constituent molecules of the innate defense system and are naturally produced by all organisms. AMPs are characterized by a relatively low molecular weight (less than 10 kDa) and a variable number of cysteine residues that form disulfide bonds and contribute to the stabilization of the tertiary structure. In addition, there is a wide repertoire of antimicrobial agents against bacteria, viruses, fungi, and protozoa that can provide a large number of prototype peptides for study and biochemical manipulation. In this sense, plant AMPs stand out because they have a wide range of biological functions against microorganisms and potential applications in medicine and agriculture. Herein, we describe a mini-review of the principal AMP families, such as defensins, lipid transfer proteins (LTPs), thionins, heveins, and cyclotides. The objective of this work was to present the main discoveries regarding the biological activities of these plant AMP families, especially in the last 20 years. We also discuss the current knowledge of their biological activities, gene expression, and possible uses as antimicrobial molecules and in plant biotechnology.
Collapse
Affiliation(s)
| | | | | | | | | | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro 28013-602, Brazil; (S.S.S.d.O.); (M.B.C.); (G.B.T.); (É.d.O.M.); (A.d.O.C.)
| |
Collapse
|
3
|
Wang Q, Feng F, Zhang K, He Y, Qi W, Ma Z, Song R. ZmICE1a regulates the defence-storage trade-off in maize endosperm. NATURE PLANTS 2024; 10:1999-2013. [PMID: 39604637 DOI: 10.1038/s41477-024-01845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024]
Abstract
The endosperm of cereal grains feeds the entire world as a major food supply; however, little is known about its defence response during endosperm development. The Inducer of CBF Expression 1 (ICE1) is a well-known regulator of cold tolerance in plants. ICE1 has a monocot-specific homologue that is preferentially expressed in cereal endosperms but with an unclear regulatory function. Here we characterized the function of monocot-specific ZmICE1a, which is expressed in the entire endosperm, with a predominant expression in its peripheral regions, including the aleurone layer, subaleurone layer and basal endosperm transfer layer in maize (Zea mays). Loss of function of ZmICE1a reduced starch content and kernel weight. RNA sequencing and CUT&Tag-seq analyses revealed that ZmICE1a positively regulates genes in starch synthesis while negatively regulating genes in aleurone layer-specific defence and the synthesis of indole-3-acetic acid and jasmonic acid (JA). Exogenous indole-3-acetic acid and JA both induce the expression of numerous defence genes, which show distinct spatial-specific expression in the basal endosperm transfer layer and subaleurone layer, respectively. Moreover, we dissected a JA-ZmJAZ9-ZmICE1a-MPI signalling axis involved in JA-mediated defence regulation. Overall, our study revealed ZmICE1a as a key regulator of endosperm defence response and a coordinator of the defence-storage trade-off in endosperm development.
Collapse
Affiliation(s)
- Qun Wang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Kechun Zhang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yonghui He
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| | - Rentao Song
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| |
Collapse
|
4
|
Rodríguez-Decuadro S, Ramos S, Rodríguez-Ustra MJ, Marques A, Smircich P, Vaio M. Transcriptome analysis of the allotetraploids of the Dilatata group of Paspalum (Poaceae): effects of diploidization on the expression of defensin and Snakin/GASA genes. Funct Integr Genomics 2024; 24:190. [PMID: 39412676 DOI: 10.1007/s10142-024-01466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 12/22/2024]
Abstract
Plant Snakin/GASA and defensin peptides are cysteine-rich molecules with a wide range of biological functions. They are included within the large family of plant antimicrobial peptides (AMPs), characterized by their structural stability, broad spectrum of activity, and diverse mechanisms of action. The Dilatata group of Paspalum includes five allotetraploids that share an equivalent genomic formula IIJJ. From RNA-seq data of seedling tissues, we performed an in silico characterization of the defensin and Snakin/GASA genes in these species and diploids with a II and JJ genome formula and studied the evolutionary consequences of polyploidy on the expression of the two AMPs families. A total of 107 defensins (distributed in eight groups) and 145 Snakin/GASA (grouped in three subfamilies) genes were identified. Deletions, duplications and/or gene silencing seem to have mediated the evolution of these genes in the allotetraploid species. In defensin genes, the IIJJ allopolyploids retained the I subgenome defensin copies in some of the identified groups supporting the closeness of their nuclear genome with the I subgenome species. In both AMPs families, orthologous genes in tetraploids exhibit higher similarity to each other than with diploids. This data supports the theory of a single origin for the allotetraploids. Several copies of both defensin and Snakin/GASA genes were detected in the five polyploids which could have arisen due to duplication events occurring independently during the diploidization processes in the allotetraploid taxa.
Collapse
Affiliation(s)
- Susana Rodríguez-Decuadro
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, 12900, Uruguay.
| | - Stefani Ramos
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, 12900, Uruguay
| | - María José Rodríguez-Ustra
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, 12900, Uruguay
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Pablo Smircich
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, 11600, Uruguay
| | - Magdalena Vaio
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, 12900, Uruguay.
| |
Collapse
|
5
|
Barashkova AS, Smirnov AN, Rogozhin EA. Complex of Defense Polypeptides of Wheatgrass ( Elytrigia elongata) Associated with Plant Immunity to Biotic and Abiotic Stress Factors. PLANTS (BASEL, SWITZERLAND) 2024; 13:2459. [PMID: 39273943 PMCID: PMC11396971 DOI: 10.3390/plants13172459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Plant defense polypeptides play a crucial role in providing plants with constitutive immunity against various biotic and abiotic stressors. In this study, we explored a complex of proteins from wheatgrass (Elytrigia elongata) spikelets to estimate their role in the plant's tolerance to various environmental factors. The current research shows that in vitro protein extracts from E. elongata spikelets possess antifungal activity against certain Fusarium species, which are specific cereal pathogens, at concentrations of 1-2 mg/mL. In this study, we reproduced these antifungal activities using a 4 mg/mL extract in artificial fungal infection experiments on wheat grain (Triticum aestivum) under controlled laboratory conditions. Furthermore, the tested extract demonstrated a protective effect on Saccharomyces cerevisiae exposed to hyper-salinity stress at a concentration of 2 mg/mL. A combined scheme of fractionation and structural identification was applied for the estimation of the diversity of defense polypeptides. Defensins, lipid-transfer proteins, hydrolase inhibitors (cereal bifunctional trypsin/alpha-amylase inhibitors from a Bowman-Birk trypsin inhibitor), and high-molecular-weight disease resistance proteins were isolated from the extract. Thus, wheatgrass spikelets appear to be a reservoir of defense polypeptides. Our findings contribute to a deeper understanding of plant defense proteins and peptides and their involvement in the adaptation to various stress factors, and they reveal the regulatory effect at the ecosystem level.
Collapse
Affiliation(s)
- Anna S Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia
| | - Alexey N Smirnov
- Department of Plant Protection, Institute of Agrobiotechnology, Timiryazev Russian State Agrarian University, 127550 Moscow, Russia
| | - Eugene A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia
| |
Collapse
|
6
|
Akinniyi G, Akinboye AJ, Yang I, Lee JG. Plant proteins, peptides, and non-protein amino acids: Toxicity, sources, and analysis. Heliyon 2024; 10:e34890. [PMID: 39145010 PMCID: PMC11320209 DOI: 10.1016/j.heliyon.2024.e34890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Plants have evolved various mechanisms to synthesize diverse range of substances that contribute to their survival against pests, pathogens, predators, and adverse environmental conditions. Although several plant metabolites possess therapeutic potential, some can be potentially harmful to human and animal health when consumed in large proportion. Proteins, peptides, and non-protein amino acids are products of plant biochemical pathways with proven beneficial and nutritional effects. Despite these benefits, the in vivo toxicities associated with certain plant-derived proteins, peptides, and non-protein amino acids pose a significant risk to humans and animals. Symptoms of poisoning include nausea, vomiting, diarrhea, hair and weight loss, goiter, cataracts, and infertility. Even though plant processing methods such as soaking and drying can reduce the amount of toxin contained in plants, complete riddance is often impossible. As such, food regulatory bodies need to prevent uncontrolled consumption of the listed and many other toxin-containing plant species to keep the public safe. For this purpose, this review collates crucial insights into the sources, and in vivo toxicity associated with certain plant-derived proteins, peptides, and non-protein amino acids that have the clear potential to adversely affect human health. Additionally, this review provides information on analytical methods suitable for the detection of these substances in plants.
Collapse
Affiliation(s)
- Ganiyu Akinniyi
- Department of Convergence Study on the Ocean Science and Technology, National Korea Maritime and Ocean University, Busan 49112, South Korea
| | - Adebayo J. Akinboye
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, South Korea
| | - Inho Yang
- Department of Convergence Study on the Ocean Science and Technology, National Korea Maritime and Ocean University, Busan 49112, South Korea
| | - Joon-Goo Lee
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, South Korea
| |
Collapse
|
7
|
Ruszczyńska M, Sytykiewicz H. New Insights into Involvement of Low Molecular Weight Proteins in Complex Defense Mechanisms in Higher Plants. Int J Mol Sci 2024; 25:8531. [PMID: 39126099 PMCID: PMC11313046 DOI: 10.3390/ijms25158531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Dynamic climate changes pose a significant challenge for plants to cope with numerous abiotic and biotic stressors of increasing intensity. Plants have evolved a variety of biochemical and molecular defense mechanisms involved in overcoming stressful conditions. Under environmental stress, plants generate elevated amounts of reactive oxygen species (ROS) and, subsequently, modulate the activity of the antioxidative enzymes. In addition, an increase in the biosynthesis of important plant compounds such as anthocyanins, lignin, isoflavonoids, as well as a wide range of low molecular weight stress-related proteins (e.g., dehydrins, cyclotides, heat shock proteins and pathogenesis-related proteins), was evidenced. The induced expression of these proteins improves the survival rate of plants under unfavorable environmental stimuli and enhances their adaptation to sequentially interacting stressors. Importantly, the plant defense proteins may also have potential for use in medical applications and agriculture (e.g., biopesticides). Therefore, it is important to gain a more thorough understanding of the complex biological functions of the plant defense proteins. It will help to devise new cultivation strategies, including the development of genotypes characterized by better adaptations to adverse environmental conditions. The review presents the latest research findings on selected plant defense proteins.
Collapse
Affiliation(s)
| | - Hubert Sytykiewicz
- Faculty of Natural Sciences, Institute of Biological Sciences, University of Siedlce, 14 Prusa St., 08-110 Siedlce, Poland;
| |
Collapse
|
8
|
Xu N, Chen B, Cheng Y, Su Y, Song M, Guo R, Wang M, Deng K, Lan T, Bao S, Wang G, Guo Z, Yu L. Integration of GWAS and RNA-Seq Analysis to Identify SNPs and Candidate Genes Associated with Alkali Stress Tolerance at the Germination Stage in Mung Bean. Genes (Basel) 2023; 14:1294. [PMID: 37372474 DOI: 10.3390/genes14061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Soil salt-alkalization seriously impacts crop growth and productivity worldwide. Breeding and applying tolerant varieties is the most economical and effective way to address soil alkalization. However, genetic resources for breeders to improve alkali tolerance are limited in mung bean. Here, a genome-wide association study (GWAS) was performed to detect alkali-tolerant genetic loci and candidate genes in 277 mung bean accessions during germination. Using the relative values of two germination traits, 19 QTLs containing 32 SNPs significantly associated with alkali tolerance on nine chromosomes were identified, and they explained 3.6 to 14.6% of the phenotypic variance. Moreover, 691 candidate genes were mined within the LD intervals containing significant trait-associated SNPs. Transcriptome sequencing of alkali-tolerant accession 132-346 under alkali and control conditions after 24 h of treatment was conducted, and 2565 DEGs were identified. An integrated analysis of the GWAS and DEGs revealed six hub genes involved in alkali tolerance responses. Moreover, the expression of hub genes was further validated by qRT-PCR. These findings improve our understanding of the molecular mechanism of alkali stress tolerance and provide potential resources (SNPs and genes) for the genetic improvement of alkali tolerance in mung bean.
Collapse
Affiliation(s)
- Ning Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Bingru Chen
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yuxin Cheng
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yufei Su
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Mengyuan Song
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Rongqiu Guo
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Minghai Wang
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Kunpeng Deng
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Tianjiao Lan
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Shuying Bao
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Guifang Wang
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Zhongxiao Guo
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Lihe Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
9
|
Ryazantsev DY, Khodzhaev EY, Kuvarina AE, Barashkova AS, Rogozhin EA. The Antifungal and Reactivation Activities of a Novel Glycine/Histidine-Rich Linear Peptide from Dog-Grass (Elytrigia repens (L.) Desv. Ex Nevski) Ears. APPL BIOCHEM MICRO+ 2023. [DOI: 10.1134/s000368382301009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Slezina MP, Istomina EA, Korostyleva TV, Odintsova TI. The γ-Core Motif Peptides of Plant AMPs as Novel Antimicrobials for Medicine and Agriculture. Int J Mol Sci 2022; 24:ijms24010483. [PMID: 36613926 PMCID: PMC9820530 DOI: 10.3390/ijms24010483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The γ-core motif is a structural element shared by most host antimicrobial peptides (AMPs), which is supposed to contribute to their antimicrobial properties. In this review, we summarized the available data on the γ-core peptides of plant AMPs. We describe γ-core peptides that have been shown to exhibit inhibitory activity against plant and human bacterial and fungal pathogens that make them attractive scaffolds for the development of novel anti-infective agents. Their advantages include origin from natural AMP sequences, broad-spectrum and potent inhibitory activity, and cost-effective production. In addition, some γ-core peptides combine antimicrobial and immunomodulatory functions, thus broadening the spectrum of practical applications. Some act synergistically with antimycotics and fungicides, so combinations of peptides with conventionally used antifungal agents can be suggested as an effective strategy to reduce the doses of potentially harmful chemicals. The presented information will pave the way for the design of novel antimicrobials on the basis of γ-core motif peptides, which can find application in medicine and the protection of crops from diseases.
Collapse
|
11
|
Slezina MP, Istomina EA, Kulakovskaya EV, Korostyleva TV, Odintsova TI. The γ-Core Motif Peptides of AMPs from Grasses Display Inhibitory Activity against Human and Plant Pathogens. Int J Mol Sci 2022; 23:ijms23158383. [PMID: 35955519 PMCID: PMC9368981 DOI: 10.3390/ijms23158383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial peptides (AMPs) constitute an essential part of the plant immune system. They are regarded as alternatives to conventional antibiotics and pesticides. In this study, we have identified the γ-core motifs, which are associated with antimicrobial activity, in 18 AMPs from grasses and assayed their antimicrobial properties against nine pathogens, including yeasts affecting humans, as well as plant pathogenic bacteria and fungi. All the tested peptides displayed antimicrobial properties. We discovered a number of short AMP-derived peptides with high antimicrobial activity both against human and plant pathogens. For the first time, antimicrobial activity was revealed in the peptides designed from the 4-Cys-containing defensin-like peptides, whose role in plant immunity has remained unknown, as well as the knottin-like peptide and the C-terminal prodomain of the thionin, which points to the direct involvement of these peptides in defense mechanisms. Studies of the mode of action of the eight most active γ-core motif peptides on yeast cells using staining with propidium iodide showed that all of them induced membrane permeabilization leading to cell lysis. In addition to identification of the antimicrobial determinants in plant AMPs, this work provides short candidate peptide molecules for the development of novel drugs effective against opportunistic fungal infections and biopesticides to control plant pathogens.
Collapse
Affiliation(s)
- Marina P. Slezina
- Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.)
| | - Ekaterina A. Istomina
- Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.)
| | - Ekaterina V. Kulakovskaya
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, 142290 Pushchino, Russia;
| | - Tatyana V. Korostyleva
- Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.)
| | - Tatyana I. Odintsova
- Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.)
- Correspondence:
| |
Collapse
|
12
|
Jain M, Amera GM, Muthukumaran J, Singh AK. Insights into biological role of plant defense proteins: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Insights of the Neofusicoccum parvum- Liquidambar styraciflua Interaction and Identification of New Cysteine-Rich Proteins in Both Species. J Fungi (Basel) 2021; 7:jof7121027. [PMID: 34947009 PMCID: PMC8707630 DOI: 10.3390/jof7121027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Neofusicoccum parvum belongs to the Botryosphaeriaceae family, which contains endophytes and pathogens of woody plants. In this study, we isolated 11 strains from diseased tissue of Liquidambar styraciflua. Testing with Koch's postulates-followed by a molecular approach-revealed that N. parvum was the most pathogenic strain. We established an in vitro pathosystem (L. styraciflua foliar tissue-N. parvum) in order to characterize the infection process during the first 16 days. New CysRPs were identified for both organisms using public transcriptomic and genomic databases, while mRNA expression of CysRPs was analyzed by RT-qPCR. The results showed that N. parvum caused disease symptoms after 24 h that intensified over time. Through in silico analysis, 5 CysRPs were identified for each organism, revealing that all of the proteins are potentially secreted and novel, including two of N. parvum proteins containing the CFEM domain. Interestingly, the levels of the CysRPs mRNAs change during the interaction. This study reports N. parvum as a pathogen of L. styraciflua for the first time and highlights the potential involvement of CysRPs in both organisms during this interaction.
Collapse
|
14
|
Liu Y, Hua YP, Chen H, Zhou T, Yue CP, Huang JY. Genome-scale identification of plant defensin ( PDF) family genes and molecular characterization of their responses to diverse nutrient stresses in allotetraploid rapeseed. PeerJ 2021; 9:e12007. [PMID: 34603847 PMCID: PMC8445089 DOI: 10.7717/peerj.12007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022] Open
Abstract
Plant defensins (PDFs), short peptides with strong antibacterial activity, play important roles in plant growth, development, and stress resistance. However, there are few systematic analyses on PDFs in Brassica napus. Here, bioinformatics methods were used to identify genome-wide PDFs in Brassica napus, and systematically analyze physicochemical properties, expansion pattern, phylogeny, and expression profiling of BnaPDFs under diverse nutrient stresses. A total of 37 full-length PDF homologs, divided into two subgroups (PDF1s and PDF2s), were identified in the rapeseed genome. A total of two distinct clades were identified in the BnaPDF phylogeny. Clade specific conserved motifs were identified within each clade respectively. Most BnaPDFs were proved to undergo powerful purified selection. The PDF members had enriched cis-elements related to growth and development, hormone response, environmental stress response in their promoter regions. GO annotations indicate that the functional pathways of BnaPDFs are mainly involved in cells killing and plant defense responses. In addition, bna-miRNA164 and bna-miRNA172 respectively regulate the expression of their targets BnaA2.PDF2.5 and BnaC7.PDF2.6. The expression patterns of BnaPDFs were analyzed in different tissues. BnaPDF1.2bs was mainly expressed in the roots, whereas BnaPDF2.2s and BnaPDF2.3s were both expressed in stamen, pericarp, silique, and stem. However, the other BnaPDF members showed low expression levels in various tissues. Differential expression of BnaPDFs under nitrate limitation, ammonium excess, phosphorus starvation, potassium deficiency, cadmium toxicity, and salt stress indicated that they might participate in different nutrient stress resistance. The genome-wide identification and characterization of BnaPDFs will enrich understanding of their molecular characteristics and provide elite gene resources for genetic improvement of rapeseed resistance to nutrient stresses.
Collapse
Affiliation(s)
- Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huan Chen
- National Tobacco Quality Supervision and Inspection Center, Zhengzhou, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Roig-Oliver M, Fullana-Pericàs M, Bota J, Flexas J. Adjustments in photosynthesis and leaf water relations are related to changes in cell wall composition in Hordeum vulgare and Triticum aestivum subjected to water deficit stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111015. [PMID: 34482918 DOI: 10.1016/j.plantsci.2021.111015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
In the current climate change scenario, understanding crops' physiological performance under water shortage is crucial to overcome drought periods. Although the implication of leaf water relations maintaining leaf turgor and stomatal functioning under water deprivation has been suggested, the relationships between photosynthesis and osmotic and elastic adjustments remain misunderstood. Similarly, only few studies in dicotyledonous analysed how changes in cell wall composition affected photosynthesis and leaf water relations under drought. To induce modifications in photosynthesis, leaf water relations and cell wall composition, Hordeum vulgare and Triticum aestivum were subjected to different water regimes: control (CL, full irrigation), moderate and severe water deficit stress (Mod WS and Sev WS, respectively). Water shortage decreased photosynthesis mainly due to stomatal conductance (gs) declines, being accompanied by reduced osmotic potential at full turgor (πo) and increased bulk modulus of elasticity (ε). Whereas both species enhanced pectins when intensifying water deprivation, species-dependent adjustments occurred for cellulose and hemicelluloses. From these results, we showed that πo and ε influenced photosynthesis, particularly, gs. Furthermore, the (Cellulose+Hemicelluloses)/Pectins ratio determined ε and mesophyll conductance (gm) in grasses, presenting the lowest pectins content within angiosperms. Thus, we highlight the relevance of cell wall composition regulating grasses physiology during drought acclimation.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de Les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain.
| | - Mateu Fullana-Pericàs
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de Les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain.
| | - Josefina Bota
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de Les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain.
| | - Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de Les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain; King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
16
|
Santos-Silva CAD, Vilela LMB, Oliveira-Silva RLD, Silva JBD, Machado AR, Bezerra-Neto JP, Crovella S, Benko-Iseppon AM. Cassava (Manihot esculenta) defensins: Prospection, structural analysis and tissue-specific expression under biotic/abiotic stresses. Biochimie 2021; 186:1-12. [PMID: 33789147 DOI: 10.1016/j.biochi.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
Defensins are a prominent family of antimicrobial peptides. They play sophisticated roles in the defense against pathogens in all living organisms, but few works address their expression under different conditions and plant tissues. The present work prospected defensins of Manihot esculenta Crantz, popularly known as cassava. Five defensin candidates (MeDefs) were retrieved from the genome sequences and characterized. Considering chromosome distribution, only MeDef1 and 2 occupy adjacent positions in the same chromosome arm. All 3D structures had antiparallel ß-sheets, an α-helix, and amphipathic residues distributed throughout the peptides with a predominance of cationic surface charge. MeDefs expression was validated by RT-qPCR, including two stress types (biotic: fungus Macrophomina pseudophaseolina, and abiotic: mechanical injury) and a combination of both stresses (fungus+injury) in three different tissues (root, stem, and leaf). For this purpose, ten reference genes (RGs) were tested, and three were chosen to characterize MeDef expression. MeDef3 was up-regulated at roots in all stress situations tested. MeDef1 and MeDef5 were induced in leaves under biotic and abiotic stresses, but not in both stress types simultaneously. Only MeDef2 was down-regulated in the stem tissue also with biotic/abiotic combined stresses. These results indicate that although defensins are known to be responsive to pathogen infection, they may act as preformed defense or, still, have tissue or stress specificities. Aspects of their structure, stability and evolution are also discussed.
Collapse
Affiliation(s)
- Carlos André Dos Santos-Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Lívia Maria Batista Vilela
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Roberta Lane de Oliveira-Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Jéssica Barboza da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Alexandre Reis Machado
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - João Pacífico Bezerra-Neto
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Sergio Crovella
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50.670-423, Recife, PE, Brazil.
| |
Collapse
|
17
|
Nikoloudakis N, Pappi P, Markakis EA, Charova SN, Fanourakis D, Paschalidis K, Delis C, Tzortzakakis EA, Tsaniklidis G. Structural Diversity and Highly Specific Host-Pathogen Transcriptional Regulation of Defensin Genes Is Revealed in Tomato. Int J Mol Sci 2020; 21:ijms21249380. [PMID: 33317090 PMCID: PMC7764197 DOI: 10.3390/ijms21249380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/17/2023] Open
Abstract
Defensins are small and rather ubiquitous cysteine-rich anti-microbial peptides. These proteins may act against pathogenic microorganisms either directly (by binding and disrupting membranes) or indirectly (as signaling molecules that participate in the organization of the cellular defense). Even though defensins are widespread across eukaryotes, still, extensive nucleotide and amino acid dissimilarities hamper the elucidation of their response to stimuli and mode of function. In the current study, we screened the Solanum lycopersicum genome for the identification of defensin genes, predicted the relating protein structures, and further studied their transcriptional responses to biotic (Verticillium dahliae, Meloidogyne javanica, Cucumber Mosaic Virus, and Potato Virus Y infections) and abiotic (cold stress) stimuli. Tomato defensin sequences were classified into two groups (C8 and C12). Our data indicate that the transcription of defensin coding genes primarily depends on the specific pathogen recognition patterns of V. dahliae and M. javanica. The immunodetection of plant defensin 1 protein was achieved only in the roots of plants inoculated with V. dahliae. In contrast, the almost null effects of viral infections and cold stress, and the failure to substantially induce the gene transcription suggest that these factors are probably not primarily targeted by the tomato defensin network.
Collapse
Affiliation(s)
- Nikolaos Nikoloudakis
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
- Correspondence: (N.N.); (G.T.)
| | - Polyxeni Pappi
- Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization ELGO-DIMITRA, Mesa Katsabas, 71307 Heraklion, Crete, Greece; (P.P.); (E.A.M.); (E.A.T.)
| | - Emmanouil A. Markakis
- Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization ELGO-DIMITRA, Mesa Katsabas, 71307 Heraklion, Crete, Greece; (P.P.); (E.A.M.); (E.A.T.)
| | - Spyridoula N. Charova
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), 70013 Heraklion, Crete, Greece;
- Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Dimitrios Fanourakis
- Giannakakis SA, Export Fruits and Vegetables, 70200 Tympaki, Crete, Greece;
- School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Crete, Greece;
| | - Konstantinos Paschalidis
- School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Crete, Greece;
| | - Costas Delis
- Department of Agricultural Technology, School of Agricultural Technology and Food Technology and Nutrition, University of Peloponnese, 24100 Antikalamos, Kalamata, Greece;
| | - Emmanuel A. Tzortzakakis
- Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization ELGO-DIMITRA, Mesa Katsabas, 71307 Heraklion, Crete, Greece; (P.P.); (E.A.M.); (E.A.T.)
| | - Georgios Tsaniklidis
- Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization ELGO-DIMITRA, Mesa Katsabas, 71307 Heraklion, Crete, Greece; (P.P.); (E.A.M.); (E.A.T.)
- Correspondence: (N.N.); (G.T.)
| |
Collapse
|