1
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. Interactions between β-lactoglobulin and polyphenols: Mechanisms, properties, characterization, and applications. Adv Colloid Interface Sci 2025; 339:103424. [PMID: 39919619 DOI: 10.1016/j.cis.2025.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
β-lactoglobulins (βLGs) have a wide range of applications in food because of their ability to emulsify, foam, and gel. This makes them good functional additives. However, their performance depends on temperature, pH, and mineral levels, so their functional qualities are limited in particular applications. How polyphenols (PPs) interact with βLG is crucial for the functional characteristics and quality of dietary compounds. In most food systems, a spontaneous interaction between proteins and PPs results in a "protein-PP conjugate," which is known to affect the sensory, functional, and nutraceutical qualities of food products. The βLG-PP conjugates can be used to enhance the quality of food. This article emphasizes analytical techniques for describing the characteristics of βLG-PP complexes/conjugates. It also goes over the functions of βLG-PP conjugates, including their solubility, thermal stability, emulsifying, and antioxidant qualities. The majority of βLG-PPs interactions is due to non-covalent (H-bonding, electrostatic interactions) or covalent bonds that are mostly caused by βLG or PP oxidation through enzymatic or non-enzymatic mechanisms. Furthermore, the conformation or type of proteins and PPs, as well as environmental factors like pH and temperature, have a significant impact on proteins-PPs interactions. Higher thermal stability, antioxidant activities, and superior emulsifying capabilities of the βLG-PP conjugates make them useful as innovative additives to enhance the quality and functions of food products.
Collapse
Affiliation(s)
- Behnaz Hashemi
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Hu YQ, Hu TG, Xu YJ, Wu JJ, Song XL, Yu YS. Interaction mechanism of carotenoids and polyphenols in mango peels. Food Res Int 2023; 173:113303. [PMID: 37803615 DOI: 10.1016/j.foodres.2023.113303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
In this study, carotenoids and polyphenols were demonstrated to be the major active substances in the crude pigment extracts (CPE) of mango peels, accounting for 0.26 mg/g and 0.15 mg/g, respectively. The interactions between carotenoids and polyphenols in CPE was observed, as evidenced by that polyphenols significantly improved the antioxidant activity and storage stability of carotenoids in the CPE. Meanwhile, scanning electron microscopy showed that polyphenols are tightly bound to carotenoids. To further elucidate the interaction mechanism, the monomers of carotenoids and polyphenols were identified by HPLC and LC-MS analysis. Lutein (203.85 μg/g), β-carotene (41.40 μg/g), zeaxanthin (4.20 μg/g) and α-carotene (1.50 μg/g) were authenticated as the primary monomers of carotenoids. Polyphenols were mainly consisted of gallic acid (95.10 μg/g), quercetin-3-β-glucoside (29.10 μg/g), catechin (11.85 μg/g) and quercetin (11.55 μg/g). The interaction indexes between carotenoid and polyphenol monomer of CPE were calculated. The result indicated that lutein and gallic acid showed the greatest synergistic effect on the scavenging of DPPH and ABTS radical, suggesting the interaction between carotenoids and polyphenols in CPE was mainly caused by lutein and gallic acid. Molecular dynamics simulations and thermodynamic parameters analysis demonstrated that hydrogen bonding, electrostatic interactions, and van der Waals forces played dominant roles in the interaction between lutein and gallic acid, which was confirmed by Raman and X-ray diffraction. These results provided a new perspective on the interaction mechanism between carotenoids and polyphenols, which offered a novel strategy for the enhancement of the activities and stability of bioactive substances.
Collapse
Affiliation(s)
- Yu-Qing Hu
- Sericultural Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Teng-Gen Hu
- Sericultural Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, PR China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517001, PR China.
| | - Yu-Juan Xu
- Sericultural Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
| | - Ji-Jun Wu
- Sericultural Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, PR China
| | - Xian-Liang Song
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China.
| | - Yuan-Shan Yu
- Sericultural Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, PR China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517001, PR China.
| |
Collapse
|
3
|
Zhao R, Lu Y, Wang C, Zhang X, Khan A, Wang C. Understanding molecular interaction between thermally modified β-lactoglobulin and curcumin by multi-spectroscopic techniques and molecular dynamics simulation. Colloids Surf B Biointerfaces 2023; 227:113334. [PMID: 37178459 DOI: 10.1016/j.colsurfb.2023.113334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
This study elucidated the binding of curcumin (CUR) onto preliminary thermally modified β-lactoglobulin (β-LG). β-LG at pH 8.1 was heated at 75 °C, 80 °C and 85 °C for 10 min to construct denatured proteins (β-LG75, β-LG80, β-LG85). Steady and time-resolved fluorescence studies uncovered that CUR quenched proteins in simultaneous static and dynamic mode. Pre-heating β-LG improved its binding with CUR and the strongest affinity occurred in β-LG80. Fluorescence resonance energy transfer (FRET) analysis indicated that binding distance between CUR and β-LG80 was the smallest and energy transfer was the most efficient. β-LG80 had the highest surface hydrophobicity. Fourier-transform infrared (FT-IR) spectroscopy and differential scanning calorimeter (DSC) confirmed that CUR transferred from crystal to amorphous state after association with protein and revealed the contribution of hydrogen bonds. Combination of β-LG80 with CUR retained the antioxidant capacity of each component. Molecular dynamics simulation demonstrated enhanced hydrophobic solvent accessible surface area of β-LG80 compared with native protein. Data obtained from this study may provide useful information for comprehensively understanding the ability of β-lactoglobulin to bind hydrophobic substances under different environmental conditions like high temperature and alkaline medium.
Collapse
Affiliation(s)
- Ru Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yingcong Lu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ce Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xiaoge Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Abbas Khan
- Department of Nutrition and Health Promotion, University of Home Economic Lahore, Pakistan
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Hashemi-Shahraki F, Shareghi B, Farhadian S, Yadollahi E. A comprehensive insight into the effects of caffeic acid (CA) on pepsin: Multi-spectroscopy and MD simulations methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122240. [PMID: 36527971 DOI: 10.1016/j.saa.2022.122240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The interaction between caffeic acid (CA) and pepsin was investigated using multi-spectroscopy approaches and molecular dynamic simulations (MDS). The effects of CA on the structure, stability, and activity of pepsin were studied. Fluorescence emission spectra and UV-vis absorption peaks all represented the static quenching mechanism of pepsin by CA. Moreover, the fluorescence spectra displayed that the interaction of CA exposed the tryptophan chromophores of pepsin to a more hydrophilic micro-environment. Consistent with the simulation results, thermodynamic parameters revealed that CA was bound to pepsin with a high binding affinity. The Van der Waals force and Hydrogen bond interaction were the dominant driving forces during the binding process. The circular dichroism (CD) spectroscopy analysis showed that the CA binding to pepsin decreased the contents of α-Helix and Random Coil but increased the content of β-sheet in the pepsin structure. Accordingly, MD simulations confirmed all the experimental results. As a result, CA is considered an inhibitor with adverse effects on pepsin activity.
Collapse
Affiliation(s)
- Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Elham Yadollahi
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
5
|
Qi X, Liu H, Ren Y, Zhu Y, Wang Q, Zhang Y, Wu Y, Yuan L, Yan H, Liu M. Effects of combined binding of chlorogenic acid/caffeic acid and gallic acid to trypsin on their synergistic antioxidant activity, enzyme activity and stability. Food Chem X 2023; 18:100664. [PMID: 37025419 PMCID: PMC10070516 DOI: 10.1016/j.fochx.2023.100664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The combined application of multiple natural polyphenols in functional foods may provide better health benefits. The binding of polyphenols with different structures to proteins will affect their respective functions. Spectroscopy and molecular docking were used to investigate the competitive binding of chlorogenic acid (CGA)/caffeic acid (CA) and gallic acid (GA) to trypsin. The effects of different molecular structures and the order of adding the three phenolic acids on the binding were assessed. The stability of trypsin and its docked complexes with CGA/CA/GA was evaluated by molecular dynamics simulation. The effects of the binding process on the activity and thermal stability of trypsin, as well as on the antioxidant activity and stability of CGA/CA/GA were explored. The competitive binding of CGA/CA and GA to trypsin affected their synergistic antioxidant effects. The results may provide a reference for the combined application of CGA/CA and GA in food and pharmaceutical fields.
Collapse
|
6
|
Lu Y, Zhao R, Wang C, Zhang X, Wang C. Deciphering the non-covalent binding patterns of three whey proteins with rosmarinic acid by multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Makori SI, Mu TH, Sun HN. Functionalization of sweet potato leaf polyphenols by nanostructured composite β-lactoglobulin particles from molecular level complexations: A review. Food Chem 2022; 372:131304. [PMID: 34655825 DOI: 10.1016/j.foodchem.2021.131304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022]
Abstract
Sweet potato leaf polyphenols (SPLPs) have shown potential health benefits in the food and pharmaceutical industries. Nowadays, consumption of SPLPs from animal feeds to foodstuff is becoming a trend worldwide. However, the application of SPLPs is limited by their low bioavailability and stability. β-lactoglobulin (βlg), a highly regarded whey protein, can interact with SPLPs at the molecular level to form reversible or irreversible nanocomplexes (NCs). Consequently, the functional properties and final quality of SPLPs are directly modified. In this review, the composition and structure of SPLPs and βlg, as well as methods of molecular complexation and mechanisms of formation of SPLPsβlgNCs, are revisited. The modified functionalities of SPLPsβlgNCs, especially protein conformational structures, antioxidant activity, solubility, thermal stability, emulsifying, and gelling properties including allergenic potential, digestibility, and practical applications are discussed for SPLPs future development.
Collapse
Affiliation(s)
- Shadrack Isaboke Makori
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China; Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), P.O. Box 30650, GPO, Nairobi, Kenya
| | - Tai-Hua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Hong-Nan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| |
Collapse
|
8
|
Xiang X, Sun Q, Gan N, Suo Z, Zhang S, Yao S, Xiang H, Yuan N, Li H. Interaction between berberine hydrochloride and β-lactoglobulin of two structures by heat treatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Sharma M, Bhat R, Usmani Z, McClements DJ, Shukla P, Raghavendra VB, Gupta VK. Bio-Based Formulations for Sustainable Applications in Agri-Food-Pharma. Biomolecules 2021; 11:biom11050768. [PMID: 34065609 PMCID: PMC8160999 DOI: 10.3390/biom11050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Minaxi Sharma
- Food (By-) Products Valorisation Technologies (VALORTECH) ERA Chair, Estonian University of Life Sciences, 51006 Tartu, Estonia or (M.S.); or (R.B.)
| | - Rajeev Bhat
- Food (By-) Products Valorisation Technologies (VALORTECH) ERA Chair, Estonian University of Life Sciences, 51006 Tartu, Estonia or (M.S.); or (R.B.)
| | - Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India;
| | | | - Pratyoosh Shukla
- Institute of Science, School of Biotechnology, Banaras Hindu University, Varanasi 221005, India;
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Vinay B. Raghavendra
- P.G. Department of Biotechnology, Teresian College, Siddarthanagar, Mysore 570011, India;
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Edinburgh EH9 3JG, UK
- Center for Safe and Improved Food, Scotland’s Rural College (SRUC), Edinburgh EH9 3JG, UK
- Correspondence: or ; Tel.: +44-1387242920
| |
Collapse
|
10
|
Qin J, Yang M, Wang Y, Wa W, Zheng J. Interaction between caffeic acid/caffeic acid phenethyl ester and micellar casein. Food Chem 2021; 349:129154. [PMID: 33556721 DOI: 10.1016/j.foodchem.2021.129154] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 01/20/2023]
Abstract
Caffeic acid (CA) and caffeic acid phenethyl ester (CAPE) are bioactive molecules with poor solubility. We investigated the interaction between CA/CAPE and micellar casein (MC), and the physico-chemical and antioxidant properties of the complexes. Fluorescence spectroscopy analysis showed that both CA and CAPE formed complexes with MC via hydrophobic interactions. The binding constant was higher for CAPE than for CA at each temperature. The complexes were confirmed by FTIR and XRD. The secondary structure of MC was not affected by CAPE, but its morphology changed. CA/CAPE did not induce the dissociation of casein micelles. CA and CAPE increased and decreased, respectively, the bulk and tapped densities of MC. The complexes had higher thermal stability and DPPH radical scavenging capacity than free MC or CA/CAPE.
Collapse
Affiliation(s)
- Juanjuan Qin
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; Institute of Agricultural Resources Chemistry and Application, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yucheng Wang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenqiang Wa
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jie Zheng
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|