1
|
Chen WH, Hsu CC, Ho HJ, Smith J, Smith S, Huang HY, Chang HC, Hsiao YC. Rapid Gluten Allergen Detection Using an Integrated Photoimaging Assay and Ionic Liquid Extraction Sensor. ACS OMEGA 2024; 9:49767-49777. [PMID: 39713688 PMCID: PMC11656241 DOI: 10.1021/acsomega.4c08411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
In recent years, food allergies and food sensitivities have remained critical public health problems that affect approximately 15% of the global population. Wheat is a major food source worldwide, but it is also a common food allergen. Celiac disease is chronic immune-mediated enteropathy triggered by exposure to dietary gluten in genetically predisposed individuals; it can be treated only through strict gluten avoidance. Therefore, rapid gluten detection is crucial for protecting the health of patients. Gluten contains two primary water-insoluble proteins: gliadin and glutenin. Gliadin is a key contributor to celiac disease and poses challenges for sample pretreatment owing to its insolubility, thereby reducing the accuracy and sensitivity of detection systems. Rapid sample processing is a critical problem in gliadin detection. In this report, we developed a gliadin sensor system called the integrated food allergy and microorganism sensor (iFAMs). The iFAMs comprises a gliadin lateral flow chip, a one-pot extraction solution, and an image assay app. The iFAMs enables gliadin extraction and detection in under 2 min with high sensitivity (0.04 mg/kg for gliadin, lower than the regulatory limit of 20 mg/kg). Users can easily measure gluten concentrations in samples and quantify gliadin levels using the smartphone-based image assay app. In samples collected from restaurants, the iFAMs successfully detected hidden gluten within "gluten-free" food items. The compact size and user-friendly design of the iFAMs render it suitable for not only consumers but also clinicians, food industries, and regulators to enhance food safety.
Collapse
Affiliation(s)
- Wen-Hao Chen
- Research
and Development Group, Leo Verification
Systems Inc., Powell, Wyoming 82435, United States
- School
of
Biological Sciences, Nanyang Technological
University, 639798 Singapore
| | - Chuan-Chih Hsu
- Department
of Surgery, College of Medicine, Taipei
Medical University, Taipei 110, Taiwan
- Department
of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Hsin-Jung Ho
- Technology
Commercialization Center, Taipei Medical
University, Taipei 110, Taiwan
| | - Jill Smith
- Research
and Development Group, Leo Verification
Systems Inc., Powell, Wyoming 82435, United States
| | - Seaton Smith
- Research
and Development Group, Leo Verification
Systems Inc., Powell, Wyoming 82435, United States
| | - Hui-Yin Huang
- Research
and Development Group, Leo Verification
Systems Inc., Powell, Wyoming 82435, United States
| | | | - Yu-Cheng Hsiao
- Graduate
Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan
- Cell Physiology
and Molecular Image Research Center, Taipei
Medical University, Taipei 110, Taiwan
- School
of
Biological Sciences, Nanyang Technological
University, 639798 Singapore
| |
Collapse
|
2
|
Xhaferaj M, Scherf KA. Gluten Is Not Gluten. Nutrients 2024; 16:2745. [PMID: 39203881 PMCID: PMC11357231 DOI: 10.3390/nu16162745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Wheat gluten is responsible for the unique baking properties of wheat flour, but it also causes wheat-related disorders in predisposed individuals. Different commercially available gluten materials are commonly used for a variety of assays, but a detailed characterization of their composition is missing in many cases. This is why we aimed to provide an in-depth analysis of three commonly used gliadin and gluten materials from two different batches using gel electrophoretic and chromatographic techniques. The gliadin material did not show the typical qualitative and quantitative protein composition and does not appear to be representative of wheat gliadin. The two gluten materials had the expected protein composition, but both showed large batch-to-batch variability regarding total protein content. Since these variations result in different biochemical, immunological, and functional behaviors, it is important to analyze at least the total protein content of each material and each batch.
Collapse
Affiliation(s)
- Majlinda Xhaferaj
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Katharina Anne Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
- Professorship of Food Biopolymer Systems, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
3
|
Rajendhran HP, Vaidyanathan VK, Venkatraman S, Karthik P. Optimization of Enzymatic Hydrolysis by Protease Produced from Bacillus subtilis MTCC 2423 to Improve the Functional Properties of Wheat Gluten Hydrolysates. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:5053510. [PMID: 38974710 PMCID: PMC11227950 DOI: 10.1155/2024/5053510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 07/09/2024]
Abstract
This study is aimed at investigating the reutilizing of gluten protein from the wheat processing industry by Bacillus subtilis MTCC 2423 protease to obtain gluten hydrolysates with high added value. Gluten protein hydrolysis using protease achieved a 34.07% degree of hydrolysis with 5% gluten protein, at a hydrolysis time of 2 h for 1000 U/mL at pH 8.0 and temperature of 40°C. Compared to the wheat gluten, the obtained hydrolysates exhibited enhanced functional attributes, including heightened solubility (43%), increased emulsifying activity (93.08 m2/g), and improved radical scavenging properties. Furthermore, these hydrolysates demonstrated enhanced antioxidant potential, as evidenced by elevated ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) of 81.25% and DPPH (2,2-diphenyl-1-picrylhydrazyl) of 56.46% radical scavenging activities and also exhibited a higher α-amylase inhibitory effect of 33.98%. The enhancement in functional characteristics of wheat gluten hydrolysates was observed by Fourier transform infrared spectroscopy. The percentage of free amino acids obtained by protease-mediated hydrolysates increased significantly compared to the unhydrolyzed wheat, which was observed by high-performance liquid chromatography. These findings suggest that wheat gluten hydrolysates hold promising potential as functional and nutritional food ingredients in the food industry, owing to their enhanced functionalities and potential antioxidant and antidiabetic properties.
Collapse
Affiliation(s)
- Hari Prasath Rajendhran
- Integrated Bioprocess LaboratoryDepartment of BiotechnologySchool of BioengineeringSRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocess LaboratoryDepartment of BiotechnologySchool of BioengineeringSRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Swethaa Venkatraman
- Integrated Bioprocess LaboratoryDepartment of BiotechnologySchool of BioengineeringSRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Pothiyappan Karthik
- Department of Food TechnologyFaculty of EngineeringKarpagam Academy of Higher Education, Coimbatore 641021, India
- Centre for Food NanotechnologyKarpagam Academy of Higher Education, Coimbatore 641 021, India
| |
Collapse
|
4
|
Faihs V, Schmalhofer V, Kugler C, Bent RK, Scherf KA, Lexhaller B, Mortz CG, Bindslev-Jensen C, Biedermann T, Skov PS, Eberlein B, Brockow K. Detection of Sensitization Profiles with Cellular In Vitro Tests in Wheat Allergy Dependent on Augmentation Factors (WALDA). Int J Mol Sci 2024; 25:3574. [PMID: 38612386 PMCID: PMC11012217 DOI: 10.3390/ijms25073574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024] Open
Abstract
Wheat allergy dependent on augmentation factors (WALDA) is the most common gluten allergy in adults. IgE-mediated sensitizations are directed towards ω5-gliadin but also to other wheat allergens. The value of the different in vitro cellular tests, namely the basophil activation test (BAT) and the active (aBHRA) and passive basophil histamine-release assays (pBHRA), in the detection of sensitization profiles beyond ω5-gliadin has not been compared. Therefore, 13 patients with challenge-confirmed, ω5-gliadin-positive WALDA and 11 healthy controls were enrolled. Specific IgE (sIgE), skin prick tests, BATs, aBHRA, and pBHRA were performed with allergen test solutions derived from wheat and other cereals, and results were analyzed and compared. This study reveals a distinct and highly individual reactivity of ω5-gliadin-positive WALDA patients to a range of wheat allergens beyond ω5-gliadin in cellular in vitro tests and SPT. In the BAT, for all tested allergens (gluten, high-molecular-weight glutenin subunits, α-amylase/trypsin inhibitors (ATIs), alcohol-free wheat beer, hydrolyzed wheat proteins (HWPs), rye gluten and secalins), basophil activation in patients was significantly higher than in controls (p = 0.004-p < 0.001). Similarly, significant histamine release was detected in the aBHRA for all test substances, exceeding the cut-off of 10 ng/mL in all tested allergens in 50% of patients. The dependency of tests on sIgE levels against ω5-gliadin differed; in the pBHRA, histamine release to any test substances could only be detected in patients with sIgE against ω5-gliadin ≥ 7.7 kU/L, whereas aBHRA also showed high reactivity in less sensitized patients. In most patients, reactivity to HWPs, ATIs, and rye allergens was observed. Additionally, alcohol-free wheat beer was first described as a promising test substance in ω5-gliadin-positive WALDA. Thus, BAT and aBHRA are valuable tools for the identification of sensitization profiles in WALDA.
Collapse
Affiliation(s)
- Valentina Faihs
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, 80802 Munich, Germany
| | - Viktoria Schmalhofer
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, 80802 Munich, Germany
| | - Claudia Kugler
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, 80802 Munich, Germany
| | - Rebekka K. Bent
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, 80802 Munich, Germany
| | - Katharina A. Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Barbara Lexhaller
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Charlotte G. Mortz
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Centre, Odense University Hospital, 5000 Odense, Denmark
| | - Carsten Bindslev-Jensen
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Centre, Odense University Hospital, 5000 Odense, Denmark
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, 80802 Munich, Germany
| | - Per S. Skov
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Centre, Odense University Hospital, 5000 Odense, Denmark
- RefLab ApS, 2200 Copenhagen, Denmark
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, 80802 Munich, Germany
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, 80802 Munich, Germany
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Centre, Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
5
|
Panda R, Boyer M. Evaluation of Gluten Protein Profiles in Hydrolyzed Food Products by a Multiplex-Competitive Enzyme-Linked Immunosorbent Assay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5026-5035. [PMID: 38408755 DOI: 10.1021/acs.jafc.3c09512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The apparent gluten concentration profiles of 47 hydrolyzed foods (barley malt, sprouted grains, and hydrolyzed wheat proteins (HWP)) were evaluated using a multiplex-competitive ELISA that utilizes the G12, R5, 2D4, MIoBS, and Skerritt antibodies from commercial sources. Cluster analysis was conducted to evaluate similarities or differences in the gluten protein/peptide response profiles among the hydrolyzed foods and their similarities or differences with fermented foods analyzed previously by the ELISA. The gluten protein/peptide response profiles of the hydrolyzed foods mainly depended on the grain source (wheat, rye, or barley) of gluten. Some hydrolyzed foods presented profiles similar to those of certain fermented foods (e.g., barley malt and gluten reduced barley beers), whereas others presented unique profiles (e.g., HWP and sprouted wheat). Additional analysis using wheat gluten-incurred yogurts indicated that while not suitable for the barley- or rye-containing foods tested, a newly developed gluten-incurred yogurt calibrant shows promise for the possible use in the quantitation of several wheat-containing fermented and hydrolyzed foods.
Collapse
Affiliation(s)
- Rakhi Panda
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition (CFSAN), FDA, College Park, Maryland 20740, United States
| | - Marc Boyer
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition (CFSAN), FDA, College Park, Maryland 20740, United States
| |
Collapse
|
6
|
Seyedain‐Ardabili M, Azizi M. Effect of ficin-hydrolyzed wheat gluten on bread quality and in vitro antioxidant activity before and after simulated gastrointestinal digestion. Food Sci Nutr 2024; 12:1768-1778. [PMID: 38455197 PMCID: PMC10916597 DOI: 10.1002/fsn3.3871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024] Open
Abstract
This study aimed to investigate the effect of adding ficin-hydrolyzed wheat gluten at different levels (0%, 1%, 2%, 4%) on bread quality, and in vitro antioxidant activity before and after simulated gastrointestinal digestion. Our findings revealed that the incorporation of the generated wheat gluten hydrolysates (WGH) up to 4 g per 100 g flour positively affected the technological and physical-chemical characterizations of breads, including dough rheological properties, color, specific volume, and moisture. The texture profile analysis indicated reductions in hardness, springiness, and chewiness of the breads, and confirmed anti-staling properties during storage. The enriched breads received satisfactory scores from the sensory panel and were perceived as less stale after a 4-day period of storage. The aroma score of the 4% WGH bread was significantly higher than other treatments. Regarding taste, the 4% WGH bread scored the lowest, but the obtained value was not statistically significant. The enriched breads exhibited DPPH, ABTS radical scavenging, and Fe2+ chelation abilities that increased in response to higher levels of hydrolysate incorporation, and these antioxidant activities were enhanced after simulated gastrointestinal digestion. Our findings confirm that it is possible to apply ficin-generated WGH to enhance physicochemical, nutritional, and biological quality of bread.
Collapse
Affiliation(s)
- Mojan Seyedain‐Ardabili
- Department of Food Science & Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohammad‐Hossein Azizi
- Department of Food Science & Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
7
|
Lu Y, Ji H, Chen Y, Li Z, Timira V. A systematic review on the recent advances of wheat allergen detection by mass spectrometry: future prospects. Crit Rev Food Sci Nutr 2023; 63:12324-12340. [PMID: 35852160 DOI: 10.1080/10408398.2022.2101091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wheat is one of the three major staple foods in the world. Although wheat is highly nutritional, it has a variety of allergenic components that are potentially fatal to humans and pose a significant hazard to the growth and consumption of wheat. Wheat allergy is a serious health problem, which is becoming more and more prevalent all over the world. To address and prevent related health risks, it is crucial to establish precise and sensitive detection and analytical methods as well as an understanding of the structure and sensitization mechanism of wheat allergens. Among various analytical tools, mass spectrometry (MS) is known to have high specificity and sensitivity. It is a promising non immune method to evaluate and quantify wheat allergens. In this article, the current research on the detection of wheat allergens based on mass spectrometry is reviewed. This review provides guidance for the further research on wheat allergen detection using mass spectrometry, and speeds up the development of wheat allergen research in China.
Collapse
Affiliation(s)
- Yingjun Lu
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Hua Ji
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), Beijing, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
8
|
Sajjad A, Ali H, Zia M. Fabrication and evaluation of vitamin doped Zno/AgNPs nanocomposite based wheat gluten films: a promising findings for burn wound treatment. Sci Rep 2023; 13:16072. [PMID: 37752271 PMCID: PMC10522583 DOI: 10.1038/s41598-023-43413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023] Open
Abstract
Burn wound treatment remains a significant issue in wound care management especially when multidrug resistant bacterial infection and accumulation are present. Delayed wound healing is mostly due to ineffectiveness of commercially available wound dressings that protects the wound but less efficient in healing perspective. Therefore, nano-based wound dressing might be efficient solution for wound healing management. The present study reports the fabrication and evaluation of zinc oxide (ZnO) or silver nanoparticles (Ag NPs) capped with vitamin A or E nanocomposite that were incorporated in wheat gluten (WG) films. The chemical structure, phase purity, and morphological features confirmed the successful coating of NPs by vitamins A and E and their interaction with WG during film casting. The maximum swelling response was observed by NPs vitamin composite WG films than control films while slow release of vitamins and NPs from films was observed up to 24 h. WG films either carrying ZnO or Ag NPs, and vitamin A or E demonstrated significant antioxidant and antibacterial potential. The NPs-vitamin composite loaded WG films showed wound contraction within 14 days during in vivo burn wound healing experiments on mice model. The rates of wound healing, re-epithelialization, collagen deposition with fibroblast regeneration, adipocytes, and hair follicle development were observed through visual and histopathological examination. The study reveals that vitamin A or E doped ZnO or Ag NPs fabricated in WG can be efficiently used against burn wounds due to their physiochemical and biological properties. Furthermore the biocompatible nature and biodegradable potential make the films more prone to mankind maneuver for initial protection and healing remedy.
Collapse
Affiliation(s)
- Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hussain Ali
- Veterinary Farms Management Sub-Division, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
9
|
Liu M, Huang J, Ma S, Yu G, Liao A, Pan L, Hou Y. Allergenicity of wheat protein in diet: Mechanisms, modifications and challenges. Food Res Int 2023; 169:112913. [PMID: 37254349 DOI: 10.1016/j.foodres.2023.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely available in people's daily diets. However, some people are currently experiencing IgE-mediated allergic reactions to wheat-based foods, which seriously impact their quality of life. Thus, it is imperative to provide comprehensive knowledge and effective methods to reduce the risk of wheat allergy (WA) in food. In the present review, recent advances in WA symptoms, the major allergens, detection methods, opportunities and challenges in establishing animal models of WA are summarized and discussed. Furthermore, an updated overview of the different modification methods that are currently being applied to wheat-based foods is provided. This study concludes that future approaches to food allergen detection will focus on combining multiple tools to rapidly and accurately quantify individual allergens in complex food matrices. Besides, biological modification has many advantages over physical or chemical modification methods in the development of hypoallergenic wheat products, such as enzymatic hydrolysis and fermentation. It is worth noting that using biotechnology to edit wheat allergen genes to produce allergen-free food may be a promising method in the future which could improve the safety of wheat foods and the health of allergy sufferers.
Collapse
Affiliation(s)
- Ming Liu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jihong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, PR China; School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| |
Collapse
|
10
|
Evaluation of antioxidant, α-amylase-inhibitory and antimicrobial activities of wheat gluten hydrolysates produced by ficin protease. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
11
|
Resilience study of wheat protein networks with large amplitude oscillatory shear rheology. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
12
|
Xiong D, Xu Q, Tian L, Bai J, Yang L, Jia J, Liu X, Yang X, Duan X. Mechanism of improving solubility and emulsifying properties of wheat gluten protein by pH cycling treatment and its application in powder oils. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Characterization of the recombinant PepX peptidase from Lactobacillus fermentum and its effect on gliadin protein hydrolysis in vitro. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Wieser H, Koehler P, Scherf KA. Chemistry of wheat gluten proteins: Qualitative composition. Cereal Chem 2022. [DOI: 10.1002/cche.10572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Herbert Wieser
- Hamburg School of Food ScienceUniversity of HamburgGrindelallee 11720146HamburgGermany
| | - Peter Koehler
- Biotask AGSchelztorstrasse 54‐5673728EsslingenGermany
| | - Katharina Anne Scherf
- Department of Bioactive and Functional Food ChemistryInstitute of Applied Biosciences, Karlsruhe Institute of Technology (KIT)Adenauerring 20 a76131KarlsruheGermany
| |
Collapse
|
15
|
Gabler AM, Gebhard J, Norwig MC, Eberlein B, Biedermann T, Brockow K, Scherf KA. Basophil Activation to Gluten and Non-Gluten Proteins in Wheat-Dependent Exercise-Induced Anaphylaxis. FRONTIERS IN ALLERGY 2022; 3:822554. [PMID: 35386651 PMCID: PMC8974719 DOI: 10.3389/falgy.2022.822554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Wheat-dependent exercise-induced anaphylaxis (WDEIA) is a cofactor-induced wheat allergy. Gluten proteins, especially ω5-gliadins, are known as major allergens, but partially hydrolyzed wheat proteins (HWPs) also play a role. Our study investigated the link between the molecular composition of gluten or HWP and allergenicity. Saline extracts of gluten (G), gluten with reduced content of ω5-gliadins (G-ω5), slightly treated HWPs (sHWPs), and extensively treated HWPs (eHWPs) were prepared as allergen test solutions and their allergenicity assessed using the skin prick test and basophil activation test (BAT) on twelve patients with WDEIA and ten controls. Complementary sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), high-performance liquid chromatography (HPLC), and mass spectrometry (MS) analyses revealed that non-gluten proteins, mainly α-amylase/trypsin inhibitors (ATIs), were predominant in the allergen test solutions of G, G-ω5, and sHWPs. Only eHWPs contained gliadins and glutenins as major fraction. All allergen test solutions induced significantly higher %CD63+ basophils/anti-FcεRI ratios in patients compared with controls. BAT using sHWPs yielded 100% sensitivity and 83% specificity at optimal cut-off and may be useful as another tool in WDEIA diagnosis. Our findings indicate that non-gluten proteins carrying yet unidentified allergenic epitopes appear to be relevant in WDEIA. Further research is needed to clarify the role of nutritional ATIs in WDEIA and identify specific mechanisms of immune activation.
Collapse
Affiliation(s)
- Angelika Miriam Gabler
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Julia Gebhard
- Department of Dermatology and Allergy Biederstein, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Marie-Christin Norwig
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Katharina Anne Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- *Correspondence: Katharina Anne Scherf
| |
Collapse
|
16
|
Gao H, Jorgensen R, Raghunath R, Nagisetty S, Ng PKW, Gangur V. Creating hypo-/nonallergenic wheat products using processing methods: Fact or fiction? Compr Rev Food Sci Food Saf 2021; 20:6089-6115. [PMID: 34455695 DOI: 10.1111/1541-4337.12830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022]
Abstract
Wheat allergy is a potentiallylife-threatening disease that affects millions of people around the world. Food processing has been shown to influence the allergenicity of wheat and other major foods. However, a comprehensive review evaluating whether or not food processing can be used to develop hypo-/nonallergenic wheat products is unavailable. There were three objectives for this study: (1) to critically evaluate the evidence on the effect of fermentation, thermal processing, and enzyme or acid hydrolysis on wheat allergenicity so as to identify the potential for and challenges of using these methods to produce hypo-/nonallergenic wheat products; (2) to identify the molecular effects of food processing needed to create such products; and (3) to map the concept questions for future research and development to produce hypo-/nonallergenic wheat products. We performed literature research using PubMed and Google Scholar databases with various combinations of keywords to generate the data to accomplish these objectives. We found that: (1) food processing significantly modulates wheat allergenicity; while some methods can reduce or even abolish the allergenicity, others can create mega allergens; and (2) fermentation and enzymatic hydrolysis hold the most potential to create novel hypo-/nonallergenic wheat products; however, preclinical validation and human clinical trials are currently lacking. We also identify five specific research concepts to advance the research to enable the creation of hypo-/nonallergenic wheat products for application in food, medical, and cosmetic industries.
Collapse
Affiliation(s)
- Haoran Gao
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Rick Jorgensen
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Rajsri Raghunath
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Siddharth Nagisetty
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Perry K W Ng
- Cereal Science Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
17
|
Gabler AM, Gebhard J, Eberlein B, Biedermann T, Scherf KA, Brockow K. The basophil activation test differentiates between patients with wheat-dependent exercise-induced anaphylaxis and control subjects using gluten and isolated gluten protein types. Clin Transl Allergy 2021; 11:e12050. [PMID: 34386193 PMCID: PMC8340350 DOI: 10.1002/clt2.12050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/17/2021] [Accepted: 07/21/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Oral food challenge using gluten and cofactors is the gold standard to diagnose wheat-dependent exercise-induced anaphylaxis (WDEIA), but this procedure puts patients at risk of an anaphylactic reaction. Specific IgE to ω5-gliadins as major allergens and skin prick tests to wheat may yield negative results. Thus, we designed a proof-of-principle study to investigate the utility of the basophil activation test (BAT) for WDEIA diagnosis. METHODS Different gluten protein types (GPT; α-, γ-, ω1,2- and ω5-gliadins, high-molecular-weight glutenin subunits [HMW-GS] and low-molecular-weight glutenin subunits [LMW-GS]) and gluten were used in different concentrations to measure basophil activation in 12 challenge-confirmed WDEIA patients and 10 control subjects. The results were compared to routine allergy diagnostics. Parameters analyzed include the percentage of CD63+ basophils, the ratio of %CD63+ basophils induced by GPT/gluten to %CD63+ basophils induced by anti-FcεRI antibody, area under the dose-response curve and test sensitivity and specificity. RESULTS GPT and gluten induced strong basophil activation for %CD63+ basophils and for %CD63+/anti-FcɛRI ratio in a dose-dependent manner in patients, but not in controls (p < 0.001, respectively). BAT performance differed from acceptable (0.73 for LMW-GS) to excellent (0.91 for ω5-gliadins) depending on the specific GPT as evaluated by the area under the receiver operating characteristic curve. Patients showed individual sensitization profiles. After determination of the best cut-off points, ω5-gliadins and HMW-GS showed the best discrimination between patients and controls with a sensitivity/specificity of 100/70 and 75/100, respectively. CONCLUSION This study shows the alternative role of BAT in better defining WDEIA and the causative wheat allergens. The best BAT parameters to distinguish WDEIA patients from controls were %CD63+ basophil values for ω5-gliadins and HMW-GS.
Collapse
Affiliation(s)
- Angelika Miriam Gabler
- Leibniz‐Institute for Food Systems Biology at the Technical University of MunichFreisingGermany
| | - Julia Gebhard
- Department of Dermatology and Allergy BiedersteinTUM School of MedicineTechnical University of MunichMunichGermany
| | - Bernadette Eberlein
- Department of Dermatology and Allergy BiedersteinTUM School of MedicineTechnical University of MunichMunichGermany
| | - Tilo Biedermann
- Department of Dermatology and Allergy BiedersteinTUM School of MedicineTechnical University of MunichMunichGermany
| | - Katharina Anne Scherf
- Leibniz‐Institute for Food Systems Biology at the Technical University of MunichFreisingGermany
- Department of Bioactive and Functional Food ChemistryInstitute of Applied BiosciencesKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Knut Brockow
- Department of Dermatology and Allergy BiedersteinTUM School of MedicineTechnical University of MunichMunichGermany
| |
Collapse
|