1
|
Ling D, Xiang C, Guolin H, Huisheng S, Xiaohua N. Ellipticine targets FGFR3 to mediate the RAS/MAPK-P38 signalling pathway to induce apoptosis in hepatocellular carcinoma cells. 3 Biotech 2025; 15:111. [PMID: 40191451 PMCID: PMC11968639 DOI: 10.1007/s13205-025-04269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/12/2025] [Indexed: 04/09/2025] Open
Abstract
This study aimed to investigate the toxic effects of ellipticine on liver cancer cells and predict its anti-liver cancer mechanism through network pharmacology, especially by targeting FGFR3 to regulate the RAS/MAPK-P38 signaling pathway, thereby inducing apoptosis of liver cancer cells. The inhibitory effect of ellipticine on the proliferation of HepG2, Huh-7, SMMC7721, BEL-7402, SK-HEP-1, LX-2, and MHCC97H cells was detected by CCK-8 assay, and the IC50 value was calculated. The potential targets of ellipticine were predicted by the database, and the intersection analysis with liver cancer-related targets was performed to construct a protein interaction network (PPI), (KEGG) pathway enrichment analysis, and molecular docking verification. FGFR3 in HepG2 cells was knocked down by siRNA, and the effects on cell proliferation, apoptosis, and ROS levels were observed. The expression changes of FGFR3, RAS, P38, and their phosphorylated forms after ellipticine treatment, as well as the effects of RAS agonist ML-908 and P38 inhibitor PD169316 on cell proliferation, apoptosis, and migration, were detected by Western blotting. Ellipticine has an inhibitory effect on all tested liver cancer cell lines, among which HepG2 has the strongest inhibitory effect, with an IC50 of 5.15 ± 0.25 μM. Ellipticine is predicted to have 32 potential targets, and 5 common targets among the 225 targets related to liver cancer, including PDGFRA, KIT, FGFR3, ERBB2, and STAT3. KEGG analysis showed that these targets are mainly involved in cancer pathways. Molecular docking showed that Ellipticine can bind strongly to FGFR3. FGFR3 expression is highest in HepG2 cells. After knocking down FGFR3, the proliferation ability of HepG2 cells is further weakened, and the addition of apoptosis inhibitor ZVAD can partially restore the proliferation ability. ROS levels increase after Ellipticine treatment, and ROS levels further increase after knocking down FGFR3, and ZVAD treatment can reduce ROS levels. After Ellipticine treatment, the expression levels of FGFR3, RAS, and p-P38 decrease. Ellipticine-induced cell proliferation inhibition and apoptosis were reversed by RAS agonist ML-908, whereas P38 inhibitor PD169316 exacerbated cell apoptosis and migration inhibition. Ellipticine induces apoptosis of liver cancer cells by targeting FGFR3 and inhibiting the RAS/MAPK-P38 signaling pathway. This discovery provides new mechanistic insights into Ellipticine as a liver cancer treatment and may lay the foundation for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Deng Ling
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Guangzhou, China
| | - Chen Xiang
- Department of General Surgery, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Guangzhou, China
| | - Hu Guolin
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Guangzhou, China
| | - Song Huisheng
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Guangzhou, China
| | - Niu Xiaohua
- Department of General Surgery, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Liang L, He C, Han X, Liu J, Yang L, Chang F, Zhang Y, Lin J. Zuojin Pill Alleviates Precancerous Lesions of Gastric Cancer by Modulating the MEK/ERK/c-Myc Pathway: An Integrated Approach of Network Pharmacology, Molecular Dynamics Simulation, and Experimental Validation. Drug Des Devel Ther 2024; 18:5905-5929. [PMID: 39679136 PMCID: PMC11646374 DOI: 10.2147/dddt.s487371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Background Precancerous lesions of gastric cancer (PLGC) represent critical stages in gastric cancer progression, with a high risk of malignancy. Current treatments, such as Helicobacter pylori eradication, show limited efficacy in reversing precancerous molecular changes. Zuojin Pill (ZJP), a traditional Chinese medicine, has demonstrated potential for treating digestive disorders and may offer a promising approach for PLGC intervention. Objective This study aims to investigate the therapeutic effects and mechanisms of ZJP in treating PLGC, focusing on its active components, target pathways, and molecular interactions. By using advanced analytical techniques, we provide a scientific foundation for ZJP's potential application in early gastric cancer intervention. Methods Using ultra-high performance liquid chromatography-quadrupole orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS), we identified active components in ZJP. A network pharmacology approach was then applied to construct a "ZJP-compound-target-disease" network. Molecular docking and molecular dynamics simulations were conducted to analyze the stability and interactions of the main active components of ZJP with core protein targets in PLGC. Animal experiments were used to validate significant targets and pathways in vivo. Results Tangeritin, Isorhamnetin, Caffeic Acid, Azelaic Acid, and Adenosine were identified as the main active components of ZJP in the treatment of PLGC, with key targets including PIK3R1, MAPK3, SRC, JAK2, STAT3, and PIK3CA. Molecular docking and molecular dynamics simulations further confirmed the relationship between compounds and target proteins. The potential molecular mechanism of ZJP predicted by network pharmacology analysis was confirmed in PLGC rats. ZJP downregulated IL-6, TNF-α, c-myc, p-MEK1 and p-ERK1/2, effectively reversing the progression of PLGC. Conclusion ZJP can reverse MNNG-induced PLGC, potentially through inhibition of the MEK/ERK/c-myc pathway and regulation of cellular proliferation and apoptosis.
Collapse
Affiliation(s)
- Lan Liang
- The First Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
- College of Nursing, Shaanxi Energy Institute, Xianyang, People’s Republic of China
| | - Chenming He
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xue Han
- Xijing 986 Hospital Department, Air Force Medical University, Xian, People’s Republic of China
| | - Jia Liu
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Liuhong Yang
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Fengjiao Chang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Yami Zhang
- The Fifth Oncology Department, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Jie Lin
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
- Shaanxi Provincial Key Laboratory of TCM Constitution and Disease Prevention, Xianyang, People’s Republic of China
| |
Collapse
|
3
|
Wu Z, Yao L, Guo J, Xu Z, Wang Z. Gastrointestinal health anti-diarrheal mixture relieves spleen deficiency-induced diarrhea through regulating gut microbiota. Open Life Sci 2024; 19:20220964. [PMID: 39655192 PMCID: PMC11627061 DOI: 10.1515/biol-2022-0964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 12/12/2024] Open
Abstract
This study evaluated the therapeutic efficacy of the gastrointestinal health anti-diarrheal mixture (GHAM) on diarrhea induced by spleen deficiency, focusing on its modulation of gut microbiota. Using specific pathogen-free Wistar rats, a spleen deficiency model was created through senna leaf gavage. Rats were divided into control, model, positive control, and GHAM treatment groups. After a 14-day treatment, fecal samples were analyzed via 16S rDNA sequencing to assess microbiota alterations. GHAM significantly mitigated diarrhea and enhanced food intake and fecal quality. It increased the abundance of beneficial bacteria, such as Romboutsia and Clostridium_sensu_stricto_1, and decreased the levels of diarrhea-associated bacteria, such as Prevotellaceae and Bacillus, thereby improving microbiota functionality. GHAM's modulation of gut microbiota structure and function effectively alleviated spleen deficiency-induced diarrhea, positioning it as a potential natural herbal treatment for gastrointestinal ailments. This study lays the groundwork for further exploration of GHAM's regulatory impact on gut health.
Collapse
Affiliation(s)
- Zhengquan Wu
- Department of Spleen and Stomach Diseases, Gansu Provincial Hospital of Traditional Chinese Medicine,
No. 418, Guazhou Road, Qilihe District, Lanzhou, 730050, Gansu, China
| | - Liuyi Yao
- Department of Spleen and Stomach Diseases, Gansu Provincial Hospital of Traditional Chinese Medicine,
No. 418, Guazhou Road, Qilihe District, Lanzhou, 730050, Gansu, China
| | - Jun Guo
- Department of Spleen and Stomach Diseases, Gansu Provincial Hospital of Traditional Chinese Medicine,
No. 418, Guazhou Road, Qilihe District, Lanzhou, 730050, Gansu, China
| | - Zhong Xu
- Department of Spleen and Stomach Diseases, Gansu Provincial Hospital of Traditional Chinese Medicine,
No. 418, Guazhou Road, Qilihe District, Lanzhou, 730050, Gansu, China
| | - Zhengyan Wang
- Department of Spleen and Stomach Diseases, Gansu Provincial Hospital of Traditional Chinese Medicine,
No. 418, Guazhou Road, Qilihe District, Lanzhou, 730050, Gansu, China
| |
Collapse
|
4
|
Kang S, Lee N, Jung B, Jeong H, Moon C, Park SI, Yun S, Yim T, Oh JM, Kim JW, Song JH, Chae S, Kim JS. Anti-Amnesic Effect of Agastache rugosa on Scopolamine-Induced Memory Impairment in Mice. Pharmaceuticals (Basel) 2024; 17:1173. [PMID: 39338335 PMCID: PMC11435268 DOI: 10.3390/ph17091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Agastache rugosa, a traditional Asian herbal medicine, is primarily used for digestive problems; yet, its cognitive benefits remain unexplored. This study evaluated the anti-amnesic effects of A. rugosa extract (ARE) on scopolamine (SCO)-induced memory impairment in mice. Mice received 100 or 200 mg/kg ARE orally for 5 days, followed by SCO injection. The ARE demonstrated significant antioxidant (DPPH IC50: 75.3 µg/mL) and anti-inflammatory effects (NO reduction). Furthermore, the ARE significantly improved memory performance in the passive avoidance test (escape latency: 157.2 s vs. 536.9 s), the novel object recognition test (novel object preference: 47.6% vs. 66.3%) and the Morris water maze (time spent in the target quadrant: 30.0% vs. 45.1%). The ARE reduced hippocampal acetylcholinesterase activity (1.8-fold vs. 1.1-fold) while increasing choline acetyltransferase (0.4-fold vs. 1.0-fold) and muscarinic acetylcholine receptor subtype I (0.3-fold vs. 1.6-fold) expression. The ARE improved hippocampal neurogenesis via doublecortin- (0.4-fold vs. 1.1-fold) and KI-67-positive (6.3 vs. 12.0) cells. Therefore, the ARE exerts protective effects against cognitive decline through cholinergic system modulation and antioxidant activity, supporting its potential use as a cognitive enhancer.
Collapse
Affiliation(s)
- Sohi Kang
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Nari Lee
- Jeju Institute of Korean Medicine, Jeju-si 63309, Republic of Korea
| | - Bokyung Jung
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Huiyeong Jeong
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Ik Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seungpil Yun
- Department of Pharmacology and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Teresa Yim
- Global GreenFriends Co., Seocho-gu, Seoul 06569, Republic of Korea
| | - Jung Min Oh
- Jeju Institute of Korean Medicine, Jeju-si 63309, Republic of Korea
| | - Jae-Won Kim
- Jeju Institute of Korean Medicine, Jeju-si 63309, Republic of Korea
| | - Ji Hoon Song
- Jeju Institute of Korean Medicine, Jeju-si 63309, Republic of Korea
- Vital to Life Co., Seongnam-si 13306, Republic of Korea
| | - Sungwook Chae
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea
- KMConvergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Joong Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
5
|
Woo YK, Kang M, Kim C, Hwang JK. Korean Mint ( Agastache rugosa) Extract and Its Bioactive Compound Tilianin Alleviate Muscle Atrophy via the PI3K/Akt/FoxO3 Pathway in C2C12 Myotubes. Prev Nutr Food Sci 2024; 29:154-161. [PMID: 38974592 PMCID: PMC11223928 DOI: 10.3746/pnf.2024.29.2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 07/09/2024] Open
Abstract
Skeletal muscle atrophy, which is characterized by diminished muscle mass, strength, and function, is caused by malnutrition, physical inactivity, aging, and diseases. Korean mint (Agastache rugosa Kuntze) possesses various biological functions, including anti-inflammatory, antioxidant, anticancer, and antiosteoporosis activities. Moreover, it contains tilianin, which is a glycosylated flavone that exerts antioxidant, anti-inflammatory, antidiabetic, and neuroprotective activities. However, no studies have analyzed the inhibitory activity of A. rugosa extract (ARE) and tilianin on muscle atrophy. Thus, the present study investigated the potential of ARE and tilianin on muscle atrophy and their underlying mechanisms of action in C2C12 myotubes treated with tumor necrosis factor-α (TNF-α). The results showed that ARE and tilianin promoted the phosphatidylinositol 3-kinase/protein kinase B pathway, thereby activating mammalian target of rapamycin (a protein anabolism-related factor) and its downstream factors. Moreover, ARE and tilianin inhibited the mRNA expression of muscle RING-finger protein-1 and atrogin-1 (protein catabolism-related factors) by blocking Forkhead box class O3 translocation. ARE and tilianin also mitigated inflammatory responses by downregulating nuclear factor-kappa B expression levels, thereby diminishing the expression levels of inflammatory cytokines, including TNF-α and interleukin-6. Additionally, ARE and tilianin enhanced the expression levels of antioxidant enzymes, including catalase, superoxide dismutase, and glutathione peroxidase. Overall, these results suggest that ARE and tilianin are potential functional ingredients for preventing or improving muscle atrophy.
Collapse
Affiliation(s)
- Yu Kyong Woo
- Graduate Program in Bioindustrial Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Minseong Kang
- Graduate Program in Bioindustrial Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Changhee Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jae-Kwan Hwang
- Graduate Program in Bioindustrial Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
6
|
Nechita MA, Pralea IE, Țigu AB, Iuga CA, Pop CR, Gál E, Vârban R, Nechita VI, Oniga O, Toiu A, Benedec D, Hanganu D, Oniga I. Agastache Species (Lamiaceae) as a Valuable Source of Volatile Compounds: GC-MS Profiling and Investigation of In Vitro Antibacterial and Cytotoxic Activities. Int J Mol Sci 2024; 25:5366. [PMID: 38791403 PMCID: PMC11120732 DOI: 10.3390/ijms25105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Nowadays, there is an increasing interest in the study of medicinal and aromatic plants, due to their therapeutic properties that correlate with the presence of different active compounds. Agastache species (sp.) are aromatic plants that belong to the Lamiaceae family, originating from North America and East Asia. The present study aimed to evaluate the composition of essential oils (EOs) obtained from different Romanian cultivated Agastache sp. and to investigate their antibacterial and cytotoxic activities. The gas chromatography-mass spectrometry (GC-MS) screening revealed that menthone was the dominant constituent of A. foeniculum (31.58%), A. rugosa (39.60%) and A. rugosa 'After Eight' (39.76%) EOs, while estragole was the major constituent of A. foeniculum "Aromat de Buzău" (63.27%) and A. mexicana (41.66%) EOs. The investigation of the antiproliferative effect showed that A. rugosa and A. foeniculum "Aromat de Buzău" EOs had significant cytotoxic activity on MDA-MB-231 and HEPG2 tumour cell lines, with the most promising effect on the MDA-MB-231 breast cancer cell line for A. foeniculum "Aromat de Buzău" EO (IC50 = 203.70 ± 0.24 μg/mL). Regarding the antibacterial activity, A. rugosa EO was most active against E. coli (8.91 ± 3.27 μL/mL) and S. aureus (10.80 ± 0.00 μL/mL). To the best of our knowledge, this is the first report on the cytotoxic effect of Agastache sp. EOs on MDA-MB-231, HCT116 and HEPG2 tumour cell lines. The results of our study provide new and promising information for the subsequent in vivo study of the pharmacological properties of Agastache sp. essential oils.
Collapse
Affiliation(s)
- Mihaela-Ancuța Nechita
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Ion Creangă Street 12, 400010 Cluj-Napoca, Romania; (M.-A.N.); (A.T.); (D.H.); (I.O.)
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 4–6, 400349 Cluj-Napoca, Romania; (I.-E.P.); (C.-A.I.)
| | - Adrian-Bogdan Țigu
- Department of Translational Medicine, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Cristina-Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 4–6, 400349 Cluj-Napoca, Romania; (I.-E.P.); (C.-A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Florești Street 64, 400509 Cluj-Napoca, Romania;
| | - Emese Gál
- Department of Chemistry and Chemical Engineering, Hungarian Line, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028 Cluj-Napoca, Romania;
| | - Rodica Vârban
- Department of Crop Science, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street 3–5, 400372 Cluj-Napoca, Romania;
| | - Vlad-Ionuț Nechita
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Victor Babeș Street 41, 400010 Cluj-Napoca, Romania;
| | - Anca Toiu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Ion Creangă Street 12, 400010 Cluj-Napoca, Romania; (M.-A.N.); (A.T.); (D.H.); (I.O.)
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Ion Creangă Street 12, 400010 Cluj-Napoca, Romania; (M.-A.N.); (A.T.); (D.H.); (I.O.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Ion Creangă Street 12, 400010 Cluj-Napoca, Romania; (M.-A.N.); (A.T.); (D.H.); (I.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Ion Creangă Street 12, 400010 Cluj-Napoca, Romania; (M.-A.N.); (A.T.); (D.H.); (I.O.)
| |
Collapse
|
7
|
Kim HJ, Jin BR, Lee CD, Kim D, Lee AY, Lee S, An HJ. Anti-Inflammatory Effect of Chestnut Honey and Cabbage Mixtures Alleviates Gastric Mucosal Damage. Nutrients 2024; 16:389. [PMID: 38337674 PMCID: PMC10857084 DOI: 10.3390/nu16030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Gastritis, one of the most common gastrointestinal disorders, damages the stomach lining as it causes a disproportion between the protective and ruinous factors of the gastric system. Cabbage (CB) is widely used to treat gastric lesions but requires the addition of natural sweeteners to counteract its distinct bitter taste. Therefore, this study sought to determine whether the combination of chestnut honey (CH)-which is known for its dark brown color and high kynurenic acid (KA) content-or KA-increased CH (KACH) with CB (CH + CB or KACH + CB) exerts synergistic effects for improving both taste and efficacy. Before confirming the gastroprotective effects in indomethacin (INDO)-induced rats, the anti-inflammatory activities of CH + CB and KACH + CB were assessed in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. As a result, treatment with either CH + CB or KACH + CB downregulated pro-inflammatory cytokine levels in LPS-stimulated RAW 264.7 macrophages by regulating the translocation of nuclear factor kappa B. Furthermore, both CH + CB and KACH + CB not only enhanced the levels of antioxidant enzymes but also triggered the activation of nuclear factor erythroid-related factor 2. Based on these effects, CH + CB or KACH + CB effectively protected the gastric mucosa in INDO-induced rats. Therefore, this study suggests that CH + CB and KACH + CB exert stronger gastroprotective effects when used together.
Collapse
Affiliation(s)
- Hyo-Jung Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-J.K.); (B.-R.J.)
| | - Bo-Ram Jin
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-J.K.); (B.-R.J.)
| | - Chang-Dae Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Doyun Kim
- KEDEM Inc., Chuncheon-si 24341, Republic of Korea;
| | - Ah Young Lee
- Department of Food Science, Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-J.K.); (B.-R.J.)
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Song JH, Nam HH, Park I, Yang S, Chun JM, Seo YS, Kim HY, Moon BC, Kang S, Moon C, Kang SI, Song JH, Kim JS. Comparative Morphology of Island and Inland Agastache rugosa and Their Gastroprotective Effects in EtOH/HCl-Induced Gastric Mucosal Gastritis. PLANTA MEDICA 2024; 90:4-12. [PMID: 37903549 DOI: 10.1055/a-2189-7272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Agastache rugosa Kuntze (Lamiaceae; Labiatae), a medicinal and functional herb used to treat gastrointestinal diseases, grows well both on islands and inland areas in South Korea. Thus, we aimed to reveal the morphological and micromorphological differences between A. rugosa grown on island and inland areas and their pharmacological effects on gastritis in an animal model by combining morphological and mass spectrophotometric analyses. Morphological analysis showed that island A. rugosa had slightly smaller plants and leaves than inland plants; however, the density of all types of trichomes on the leaves, petioles, and stems of island A. rugosa was significantly higher than that of inland plants. The essential oil component analysis revealed that pulegone levels were substantially higher in island A. rugosa than in inland A. rugosa. Despite the differences between island and inland A. rugosa, treatment with both island and inland A. rugosa reduced gastric damages by more than 40% compared to the gastritis induction group. In addition, expression of inflammatory protein was reduced by about 30% by treatment of island and inland A. rugosa. The present study demonstrates quantitative differences in morphology and volatile components between island and inland plants; significant differences were not observed between the gastritis-inhibitory effects of island and inland A. rugosa, and the efficacy of island A. rugosa was found to be similar to that of A. rugosa grown in inland areas.
Collapse
Affiliation(s)
- Jun-Ho Song
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do, Korea
- Department of Biology, Chungbuk National University, Cheongju, Korea
| | - Hyeon-Hwa Nam
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do, Korea
| | - Inkyu Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do, Korea
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| | - Sungyu Yang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do, Korea
| | - Jin Mi Chun
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do, Korea
| | - Yun-Soo Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do, Korea
| | - Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do, Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Jeollanam-do, Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Korea
| | - Seong-Il Kang
- Jeju Institute of Korean Medicine, Jeju-si, Jeju-do, Korea
| | - Ji Hoon Song
- Jeju Institute of Korean Medicine, Jeju-si, Jeju-do, Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Korea
| |
Collapse
|
9
|
Liu J, Wu R, Yuan S, Kelleher R, Chen S, Chen R, Zhang T, Obaidi I, Sheridan H. Pharmacogenomic Analysis of Combined Therapies against Glioblastoma Based on Cell Markers from Single-Cell Sequencing. Pharmaceuticals (Basel) 2023; 16:1533. [PMID: 38004399 PMCID: PMC10675611 DOI: 10.3390/ph16111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/01/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is the most common and aggressive form of primary brain cancer and the lack of viable treatment options has created an urgency to develop novel treatments. Personalized or predictive medicine is still in its infancy stage at present. This research aimed to discover biomarkers to inform disease progression and to develop personalized prophylactic and therapeutic strategies by combining state-of-the-art technologies such as single-cell RNA sequencing, systems pharmacology, and a polypharmacological approach. As predicted in the pyroptosis-related gene (PRG) transcription factor (TF) microRNA (miRNA) regulatory network, TP53 was the hub gene in the pyroptosis process in glioblastoma (GBM). A LASSO Cox regression model of pyroptosis-related genes was built to accurately and conveniently predict the one-, two-, and three-year overall survival rates of GBM patients. The top-scoring five natural compounds were parthenolide, rutin, baeomycesic acid, luteolin, and kaempferol, which have NFKB inhibition, antioxidant, lipoxygenase inhibition, glucosidase inhibition, and estrogen receptor agonism properties, respectively. In contrast, the analysis of the cell-type-specific differential expression-related targets of natural compounds showed that the top five subtype cells targeted by natural compounds were endothelial cells, microglia/macrophages, oligodendrocytes, dendritic cells, and neutrophil cells. The current approach-using the pharmacogenomic analysis of combined therapies-serves as a model for novel personalized therapeutic strategies for GBM treatment.
Collapse
Affiliation(s)
- Junying Liu
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (T.Z.); (I.O.); (H.S.)
| | - Ruixin Wu
- Preclinical Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274, Zhijiang Road, Jing’an District, Shanghai 200071, China;
| | - Shouli Yuan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
| | - Robbie Kelleher
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland;
| | - Siying Chen
- The Second Affiliated Hospital, Nanchang University, Nanchang 330031, China;
| | - Rongfeng Chen
- National Center for Occupational Safety and Health, NHC, Beijing 102308, China;
| | - Tao Zhang
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (T.Z.); (I.O.); (H.S.)
- School of Food Science & Environmental Health, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Ismael Obaidi
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (T.Z.); (I.O.); (H.S.)
| | - Helen Sheridan
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (T.Z.); (I.O.); (H.S.)
| |
Collapse
|
10
|
Li Z, Wang B, Sun K, Yin G, Wang P, Yu XA, Zhang C, Tian J. An aggregation-induced emission sensor combined with UHPLC-Q-TOF/MS for fast identification of anticoagulant active ingredients from traditional Chinese medicine. Anal Chim Acta 2023; 1279:341799. [PMID: 37827639 DOI: 10.1016/j.aca.2023.341799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Xuebijing injection (XBJ) has a good therapeutic effect on the patients with severe coronavirus disease, but the material basis of XBJ with the anticoagulant effect to improve the coagulopathy and thromboembolism is still unclear. Herein, we developed a new strategy based on aggregation-induced emission (AIE) for monitoring thrombin activity and screening thrombin inhibitors from XBJ. The molecule AIE603 and the thrombin substrate peptide S-2238 were formed into AIE nanoparticle (AIENP) which emitted notable fluorescence due to the restriction of intramolecular motions. In the presence of thrombin, AIENP was specifically hydrolyzed and AIE603 was released from AIENP, leading to the decrease of fluorescence intensity. Furthermore, AIENP was combined with ultra-high performance liquid chromatography-fraction collector (UHPLC-FC) and ultra-high performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) for separation, preparation, screening and identification of the thrombin inhibitors from XBJ, a total of 58 chemical constituents were identified, among which 6 compounds possessed higher anticoagulant activity. Notably, the overall inhibition rate of the 6 mixed standards was equivalent to about 60% of the inhibition rate of XBJ. Therefore, this work provides a novel, cheap and simple method for monitoring thrombin activity and is promising to screen active substances from traditional Chinese medicines.
Collapse
Affiliation(s)
- Ziyi Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Kunhui Sun
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Guo Yin
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
11
|
Lam VP, Beomseon L, Anh VK, Loi DN, Kim S, Kwang-ya L, Park J. Effectiveness of silver nitrate application on plant growth and bioactive compounds in Agastache rugosa (Fisch. & C.A.Mey.) kuntze. Heliyon 2023; 9:e20205. [PMID: 37810151 PMCID: PMC10559964 DOI: 10.1016/j.heliyon.2023.e20205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The objective of this study was to determine the optimal dose of silver nitrate (AgNO3) for plant growth and to increase the main bioactive compounds in A. rugosa cultivated in a hydroponic system. The application of soaked diniconazole (120 μmol mol-1) to all plants at 7 days after transplanting (DAT) for dwarfing plant height, optimizing cultivation space in the plant factory. Subsequently, plants were soaked with 50, 100, 200, and 400 μmol mol-1 AgNO3 for 10 min at 25 DAT and harvested at 39 DAT. The results indicated that 200 and 400 μmol mol-1 treatments tended to severely decrease plant growth parameters compared to treatments with lower concentrations. The net photosynthetic rate was significantly reduced by the 200 and 400 μmol mol-1 treatments compared to treatments with other concentrations. The 400 μmol mol-1 treatment led to the lowest concentrations of chlorophyll a, chlorophyll a/b, total carotenoid, chlorophyll b, and the total chlorophyll. However, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was considerably increased in 50, 100, 200, and 400 μmol mol-1 compared to that of the control plants. A higher rosmarinic acid (RA) concentration in the whole plant was noticed with the 400 μmol mol-1 treatment compared with that of the untreated plants. The 100 μmol mol-1 treatment exhibited the highest concentration and content of tilianin in the whole plant. Concentration of acacetin 1 significantly increased in the whole plant with 100 and 200 μmol mol-1 treatments compared with that of the untreated plants. Concentrations of acacetin 2 and 3 in the whole plant were the highest with 100 and 200 μmol mol-1 treatments, respectively. The results demonstrated that 100 μmol mol-1 treatments can be used to increase bioactive compounds without severely limiting the plant growth and reducing chlorophyll concentrations of A. rugosa. Implementing this optimal dose can enable growers and researchers to cultivate A. rugosa more efficiently, enhancing bioactive compound content and overall plant performance, thus harnessing the potential health benefits of this valuable plant species.
Collapse
Affiliation(s)
- Vu Phong Lam
- Department of Horticultural Science, Chungnam National University, Daejeon, 34134, South Korea
- Department of Agronomy, Tay Bac University, Son La, 360000, Viet Nam
| | - Lee Beomseon
- Naru Agricultural Consultancy Company, Jisanmaeul-gil 19, Buk-gu, Gwangju city, 61014, South Korea
| | - Vu Ky Anh
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
| | - Dao Nhan Loi
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
- Department of Agronomy, Tay Bac University, Son La, 360000, Viet Nam
| | - Sunwoo Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
| | - Lee Kwang-ya
- Institude of Agriculture Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Jongseok Park
- Department of Horticultural Science, Chungnam National University, Daejeon, 34134, South Korea
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
| |
Collapse
|
12
|
Nechita MA, Toiu A, Benedec D, Hanganu D, Ielciu I, Oniga O, Nechita VI, Oniga I. Agastache Species: A Comprehensive Review on Phytochemical Composition and Therapeutic Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:2937. [PMID: 37631149 PMCID: PMC10459224 DOI: 10.3390/plants12162937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023]
Abstract
The Agastache genus is part of the Lamiaceae family and is native to North America, while one species, Agastache rugosa (A. rugosa), is native to East Asia. A review on the phytochemistry and bioactivity of Agastache genus was last performed in 2014. Since then, a lot of progress has been made on the characterization of the phytochemical and pharmacological profiles of Agastache species. Thus, the purpose of this paper is to present a summary of the findings on the phytochemistry and biological effects of several Agastache species, including both extracts and essential oil characterization. We performed a comprehensive search using PubMed and Scopus databases, following PRISMA criteria regarding the study selection process. The available data is focused mainly on the description of the chemical composition and bioactivity of A. rugosa, with fewer reports referring to Agastache mexicana (A. mexicana) and Agastache foeniculum (A. foeniculum). Agastache species are characterized by the dominance of flavonoids and phenolic acids, as well as volatile compounds, particularly phenylpropanoids and monoterpenes. Moreover, a series of pharmacological effects, including antioxidant, cytotoxic, antimicrobial, anti-atherosclerotic, and cardioprotective properties, have been reported for species from the Agastache genus.
Collapse
Affiliation(s)
- Mihaela-Ancuța Nechita
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Anca Toiu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania
| | - Vlad-Ionuț Nechita
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Jie X, Feng Y, Jiahao F, Ganggui L, Jiani Y, Zhongyu X, Yuan Y, Tinggang Z, Xiaodan Z, Zongsuo L. Comprehensive chemical profiling of two Dendrobium species and identification of anti-hepatoma active constituents from Dendrobium chrysotoxum by network pharmacology. BMC Complement Med Ther 2023; 23:217. [PMID: 37393306 DOI: 10.1186/s12906-023-04048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Dendrobium nobile and Dendrobium chrysotoxum are important species of the genus Dendrobium and have great economic and medicinal value. However, the medicinal properties of these two plants remain poorly understood. This study aimed to investigate the medical properties of D. nobile and D. chrysotoxum by conducting a comprehensive chemical profiling of the two plants. Additionally, active compounds and predictive targets for anti-hepatoma activity in D. chrysotoxum extracts were identified using Network Pharmacology. RESULTS Chemical profiling showed that altogether 65 phytochemicals were identified from D. nobile and D. chrysotoxum, with major classes as alkaloids, terpenoids, flavonoids, bibenzyls and phenanthrenes. About 18 compounds were identified as the important differential metabolites in D. nobile and D. chrysotoxum. Furtherly, CCK-8 results showed that the extracts of stems and leaves of D. nobile and D. chrysotoxum could inhibit the growth of Huh-7 cells, and the anti-hepatoma activity of extracts were dose-dependent. Among the extracts, the extract of D. chrysotoxum showed significant anti-hepatoma activity. In order to find the potential mechanism of anti-hepatoma activity of D. chrysotoxum, five key compounds and nine key targets were obtained through constructing and analyzing the compound-target-pathway network. The five key compounds were chrysotobibenzyl, chrysotoxin, moscatilin, gigantol and chrysotoxene. Nine key targets, including GAPDH, EGFR, ESR1, HRAS, SRC, CCND1, HIF1A, ERBB2 and MTOR, could be considered as the core targets of the anti-hepatoma activity of D. chrysotoxum. CONCLUSIONS In this study, the chemical composition difference and anti-hepatoma activity of stems and leaves of D. nobile and D. chrysotoxum were compared, and the potential anti-hepatoma mechanism of D. chrysotoxum was revealed in a multi-target and multi-pathway manner.
Collapse
Affiliation(s)
- Xia Jie
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yin Feng
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd, Shaoxing, China
| | - Fang Jiahao
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lou Ganggui
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yu Jiani
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xu Zhongyu
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Yuan
- State Key Lab Breeding Base Dao-Di Herbs, National Resource Center Chinese Materia Medica, Beijing, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Zhang Xiaodan
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Liang Zongsuo
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd, Shaoxing, China
| |
Collapse
|
14
|
Do TMH, Choi M, Kim JK, Kim YJ, Park C, Park CH, Park NI, Kim C, Sathasivam R, Park SU. Impact of Light and Dark Treatment on Phenylpropanoid Pathway Genes, Primary and Secondary Metabolites in Agastache rugosa Transgenic Hairy Root Cultures by Overexpressing Arabidopsis Transcription Factor AtMYB12. Life (Basel) 2023; 13:life13041042. [PMID: 37109572 PMCID: PMC10142052 DOI: 10.3390/life13041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Agastache rugosa, otherwise called Korean mint, has a wide range of medicinal benefits. In addition, it is a rich source of several medicinally valuable compounds such as acacetin, tilianin, and some phenolic compounds. The present study aimed to investigate how the Tartary buckwheat transcription factor AtMYB12 increased the primary and secondary metabolites in Korean mint hairy roots cultured under light and dark conditions. A total of 50 metabolites were detected by using high-performance liquid chromatography (HPLC) and gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). The result showed that the AtMYB12 transcription factor upregulated the phenylpropanoid biosynthesis pathway genes, which leads to the highest accumulation of primary and secondary metabolites in the AtMYB12-overexpressing hairy root lines (transgenic) than that of the GUS-overexpressing hairy root line (control) when grown under the light and dark conditions. However, when the transgenic hairy root lines were grown under dark conditions, the phenolic and flavone content was not significantly different from that of the control hairy root lines. Similarly, the heat map and hierarchical clustering analysis (HCA) result showed that most of the metabolites were significantly abundant in the transgenic hairy root cultures grown under light conditions. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) showed that the identified metabolites were separated far based on the primary and secondary metabolite contents present in the control and transgenic hairy root lines grown under light and dark conditions. Metabolic pathway analysis of the detected metabolites showed 54 pathways were identified, among these 30 were found to be affected. From these results, the AtMYB12 transcription factor activity might be light-responsive in the transgenic hairy root cultures, triggering the activation of the primary and secondary metabolic pathways in Korean mint.
Collapse
Affiliation(s)
- Thi Minh Hanh Do
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Minsol Choi
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Ye Jin Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Chanung Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang Ha Park
- Department of Biological Sciences, Keimyung University, Dalgubeol-daero 1095, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Nam Il Park
- Division of Plant Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Republic of Korea
| | - Changsoo Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ramaraj Sathasivam
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sang Un Park
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
15
|
Su Y, Bai Q, Tao H, Xu B. Prospects for the application of traditional Chinese medicine network pharmacology in food science research. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 36882903 DOI: 10.1002/jsfa.12541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
There has always been a particular difficulty with in-depth research on the mechanisms of food nutrition and bioactivity. The main function of food is to meet the nutritional needs of the human body, rather than to exert a therapeutic effect. Its relatively modest biological activity makes it difficult to study from the perspective of general pharmacological models. With the popularity of functional foods and the concept of dietary therapy, and the development of information and multi-omics technology in food research, research into these mechanisms is moving towards a more microscopic future. Network pharmacology has accumulated nearly 20 years of research experience in traditional Chinese medicine (TCM), and there has been no shortage of work from this perspective on the medicinal functions of food. Given the similarity between the concept of 'multi-component-multi-target' properties of food and TCM, we think that network pharmacology is applicable to the study of the complex mechanisms of food. Here we review the development of network pharmacology, summarize its application to 'medicine and food homology', and propose a methodology based on food characteristics for the first time, demonstrating its feasibility for food research. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanyuan Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qiong Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Protective Effect of Bojungikki-Tang against Radiation-Induced Intestinal Injury in Mice: Experimental Verification and Compound-Target Prediction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:5417813. [PMID: 36644439 PMCID: PMC9833920 DOI: 10.1155/2023/5417813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023]
Abstract
Bojungikki-tang (BJIT) is a traditional herbal medicine used in Korea, Japan, and China to treat gastrointestinal disorders. In this study, we aimed to investigate whether BJIT has protective effects against radiation-induced intestinal injury and to predict the underlying therapeutic mechanisms and related pathways via network pharmacological analyses. BJIT was injected intraperitoneally (50 mg/kg body weight) to C3H/HeN mice at 36 and 12 h before exposure to partial abdominal irradiation (5 Gy and 13 Gy) to evaluate the apoptotic changes and the histological changes and variations in inflammatory cytokine mRNA levels in the jejunum, respectively. Through in silico network analysis, we predicted the mechanisms underlying BJIT-mediated regulation of radiation-induced intestinal injury. BJIT reduced the level of apoptosis in the jejunal crypts 12 h post 5-Gy irradiation. Histological assessment revealed intestinal morphological changes in irradiated mice 3.5 days post 13-Gy irradiation. Furthermore, BJIT decreased inflammatory cytokine levels following radiation exposure. Apoptosis, TNF, p53, VEGF, toll-like receptor, PPAR, PI3K-Akt, and MAPK signaling pathways, as well as inflammatory bowel disease (IBD), were found to be linked to the radioprotective effects of BJIT against intestinal injury. According to our results, BJIT exerted its potential protective effects by attenuating histopathological changes in jejunal crypts and suppressing inflammatory mediator levels. Therefore, BJIT is a potential therapeutic agent that can treat radiation-induced intestinal injury and its associated symptoms.
Collapse
|
17
|
Nan L, Nam HH, Choo BK. Agastache rugosa inhibits LPS-induced by RAW264.7 cellular inflammation and ameliorates oesophageal tissue damage from acute reflux esophagitis in rats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Loranthus tanakae Franch. & Sav. Suppresses Inflammatory Response in Cigarette Smoke Condensate Exposed Bronchial Epithelial Cells and Mice. Antioxidants (Basel) 2022; 11:antiox11101885. [PMID: 36290608 PMCID: PMC9598098 DOI: 10.3390/antiox11101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Loranthus tanakae Franch. & Sav. found in China, Japan, and Korea is traditionally used for managing arthritis and respiratory diseases. In this study, we analyzed the components of L. tanakae 70% ethanol extract (LTE) and investigated the therapeutic effects of LTE on pulmonary inflammation using cells exposed to cigarette smoke condensate (CSC) and lipopolysaccharide (LPS) in vitro and in vivo in mice and performed a network analysis between components and genes based on a public database. We detected quercitrin, afzelin, rhamnetin 3-rhamnoside, and rhamnocitrin 3-rhamnoside in LTE, which induced a significant reduction in inflammatory mediators including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and inflammatory cells in CSC exposed H292 cells and in mice, accompanied by a reduction in inflammatory cell infiltration into lung tissue. In addition, LTE increased translocation into the nuclei of nuclear factor erythroid-2-related factor 2 (Nrf2). By contrast, the activation of nuclear factor (NF)-κB, induced by CSC exposure, decreased after LTE application. These results were consistent with the network pharmacological analysis. In conclusion, LTE effectively attenuated pulmonary inflammation caused by CSC+LPS exposure, which was closely involved in the enhancement of Nrf2 expression and suppression of NF-κB activation. Therefore, LTE may be a potential treatment option for pulmonary inflammatory diseases including chronic obstructive pulmonary disease (COPD).
Collapse
|
19
|
Network Pharmacology-Based Investigation on Therapeutic Mechanisms of the Angelica dahurica Radix and Ligusticum chuanxiong Rhizoma Herb Pair for Anti-Migraine Effect. PLANTS 2022; 11:plants11172196. [PMID: 36079577 PMCID: PMC9460128 DOI: 10.3390/plants11172196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Migraines are a common neurological disorder characterized by desperate throbbing unilateral headaches and are related to phonophobia, photophobia, nausea, and vomiting. The Angelica dahurica Radix and Ligusticum chuanxiong Rhizoma herb pair (ALHP) has been used to treat migraines for centuries in traditional Chinese medicine (TCM). However, the physiological mechanisms of migraine treatment have not yet been elucidated. In this study, a total of 50 hub targets related to the effect of 28 bioactive compounds in ALHP on anti-migraine were obtained through network pharmacology analysis. GO and KEGG analyses of the hub targets demonstrated that ALHP treatment of migraines significantly involved the G-protein-coupled receptor signaling pathway, chemical synaptic transmission, inflammatory response, and other biological processes. According to the degree of gene targets in the network, ACE, SLC3A6, NR3CI, MAPK1, PTGS2, PIK3CA, RELA, GRIN1, GRM5, IL1B, and DRD2 were found to be the core gene targets. The docking results showed a high affinity for docked conformations between compounds and predicted targets. The results of this study suggest that ALHP could treat migraines by regulating immunological functions, diminishing inflammation, and improving immunity through different physiological pathways, which contributes to the scientific base for more in-depth research as well as for a more widespread clinical application of ALHP.
Collapse
|
20
|
Pak SW, Lee AY, Seo YS, Lee SJ, Kim WI, Shin DH, Kim JC, Kim JS, Lim JO, Shin IS. Anti-asthmatic effects of Phlomis umbrosa Turczaninow using ovalbumin induced asthma murine model and network pharmacology analysis. Biomed Pharmacother 2021; 145:112410. [PMID: 34775237 DOI: 10.1016/j.biopha.2021.112410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Phlomis umbrosa Turczaninow has been used as a tradition herbal medicine for treating various inflammatory diseases. PURPOSE In present study, we explored the effects of P. umbrosa on asthma induced by ovalbumin (OVA) and elucidated the mechanism via in vivo verification and network pharmacology prediction. METHODS The animals were intraperitoneally injected OVA on day 1 and 14, followed by OVA inhalation on days 21, 22, and 23. The animals were daily treated P. umbrosa extract (PUE, 20 and 40 mg/kg) by oral gavage from day 18 to day 23. RESULTS PUE significantly decreased airway hyperresponsiveness, eosinophilia, and the production of inflammatory cytokines and OVA specific immunoglobulin E in animals with asthma, along with a reduction in airway inflammation and mucus secretion in lung tissue. In network analysis, antiasthmatic effects of PUE were closely related with suppression of mitogen-activated protein kinases and matrix metalloproteinases (MMPs). Consistent with the results from network analysis, PUE suppressed the phosphorylation of ERK and p65, which was accompanied by a decline in MMP-9 expression. CONCLUSION Administration of PUE effectively reduced allergic responses in asthmatic mice, which was associated with the suppressed phosphorylation of ERK and p65, and expression of MMP-9. These results indicate that PUE has therapeutic potential to treat allergic asthma.
Collapse
Affiliation(s)
- So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - A Yeong Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, South Korea
| | - Yun-Soo Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, South Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Dong-Ho Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Je-Oh Lim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea.
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea.
| |
Collapse
|
21
|
Chen K, Zhang L, Qu Z, Wan F, Li J, Yang Y, Yan H, Huang S. Uncovering the Mechanisms and Molecular Targets of Weibing Formula 1 against Gastritis: Coupling Network Pharmacology with GEO Database. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5533946. [PMID: 34471638 PMCID: PMC8405302 DOI: 10.1155/2021/5533946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/09/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023]
Abstract
Weibing Formula 1, a classic traditional formula, has been widely used clinically to treat gastritis in recent years. However, the potential pharmacological mechanism of Weibing Formula 1 is still unclear to date. A network pharmacology-based strategy was performed to uncover the underlying mechanisms of Weibing Formula 1 against gastritis. Furthermore, we structured the drug-active ingredients-genes-disease network and PPI network of shared targets, and function enrichment analysis of these targets was carried out. Ultimately, Gene Expression Omnibus (GEO) datasets and real-time quantitative PCR were used to verify the related genes. We found 251 potential targets corresponding to 135 bioactive components of Weibing Formula 1. Then, 327 gastritis-related targets were known gastritis-related targets. Among which, 60 common targets were shared between potential targets of Weibing Formula 1 and known gastritis-related targets. The results of pathway enrichment analysis displayed that 60 common targets mostly participated in various pathways related to Toll-like receptor signaling pathway, MAPK signaling pathway, cytokine-cytokine receptor interaction pathway, chemokine signaling pathway, and apoptosis. Based on the GSE60427 dataset, 15 common genes were shared between differentially expressed genes and 60 candidate targets. The verification results of the GSE5081 dataset showed that except for DUOX2 and VCAM1, the other 13 genes were significantly upregulated in gastritis, which was consistent with the results in the GSE60427 dataset. More importantly, real-time quantitative PCR results showed that the expressions of PTGS2, MMP9, CXCL2, and CXCL8 were significantly upregulated and NOS2, EGFR, and IL-10 were downregulated in gastritis patients, while the expressions of PTGS2, MMP9, CXCL2, and CXCL8 were significantly downregulated and NOS2, EGFR, and IL-10 were upregulated after the treatment of Weibing Formula 1. PTGS2, NOS2, EGFR, MMP9, CXCL2, CXCL8, and IL-10 may be the important direct targets of Weibing Formula 1 in gastritis treatment. Our study revealed the mechanism of Weibing Formula 1 in gastritis from an overall and systematic perspective, providing a theoretical basis for further knowing and application of this formula in the future.
Collapse
Affiliation(s)
- Ke Chen
- Department of Traditional Chinese Medicine, People's Hospital of Xinjin District, Chengdu, China
| | - Luojian Zhang
- Department of Rehabilitation Medicine, China MCC5 Group Corp. Ltd. Hospital, China
| | - Zhen Qu
- Department of Foot and Ankle, Sichuan Provincial Orthopaedic Hospital, China
| | - Feng Wan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, China
- State Key Laboratory of Southwestern Chinese Medicine Resources/Chengdu University of Traditional Chinese Medicine, China
| | - Jia Li
- Department of Traditional Chinese Medicine, People's Hospital of Xinjin District, Chengdu, China
| | - Ye Yang
- Department of Traditional Chinese Medicine, People's Hospital of Xinjin District, Chengdu, China
| | - Hui Yan
- Department of Traditional Chinese Medicine, People's Hospital of Xinjin District, Chengdu, China
| | - Shile Huang
- Department of Acupuncture and Moxibustion, Hospital of Chengdu University of Traditional Chinese Medicine, China
| |
Collapse
|
22
|
İSTİFLİ ES, ŞIHOĞLU TEPE A, SARIKÜRKCÜ C, TEPE B. Molecular interactions of some phenolics with 2019-nCoV and related pathway elements. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2021. [DOI: 10.21448/ijsm.958597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Junren C, Xiaofang X, Mengting L, Qiuyun X, Gangmin L, Huiqiong Z, Guanru C, Xin X, Yanpeng Y, Fu P, Cheng P. Pharmacological activities and mechanisms of action of Pogostemon cablin Benth: a review. Chin Med 2021; 16:5. [PMID: 33413544 PMCID: PMC7791836 DOI: 10.1186/s13020-020-00413-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Patchouli ("Guanghuoxiang") or scientifically known as Pogostemon cablin Benth, belonging to the family Lamiaceae, has been used in traditional Chinse medicine (TCM) since the time of the Eastern Han dynasty. In TCM theory, patchouli can treat colds, nausea, fever, headache, and diarrhea. Various bioactive compounds have been identified in patchouli, including terpenoids, phytosterols, flavonoids, organic acids, lignins, glycosides, alcohols, pyrone, and aldehydes. Among the numerous compounds, patchouli alcohol, β-patchoulene, patchoulene epoxide, pogostone, and pachypodol are of great importance. The pharmacological impacts of these compounds include anti-peptic ulcer effect, antimicrobial effect, anti-oxidative effect, anti-inflammatory effect, effect on ischemia/reperfusion injury, analgesic effect, antitumor effect, antidiabetic effect, anti-hypertensive effect, immunoregulatory effect, and others.For this review, we examined publications from the previous five years collected from PubMed, Web of Science, Springer, and the Chinese National Knowledge Infrastructure databases. This review summarizes the recent progress in phytochemistry, pharmacology, and mechanisms of action and provides a reference for future studies focused on clinical applications of this important plant extract.
Collapse
Affiliation(s)
- Chen Junren
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Xie Xiaofang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Li Mengting
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Xiong Qiuyun
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Li Gangmin
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Zhang Huiqiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Chen Guanru
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Xu Xin
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Yin Yanpeng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Peng Fu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China.
- West China School of Pharmacy, Sichuan University, 17 South Renmin Rd, 610065, Chengdu, China.
| | - Peng Cheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu District, Chengdu, 611137, China.
| |
Collapse
|
24
|
Ge H, Zhang B, Li T, Yu Y, Men F, Zhao S, Liu J, Zhang T. Potential targets and the action mechanism of food-derived dipeptides on colitis: network pharmacology and bioinformatics analysis. Food Funct 2021; 12:5989-6000. [DOI: 10.1039/d1fo00469g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study provides an efficient method for screening food-derived dipeptides to attenuate colitis based on the network pharmacology and bioinformatics analysis.
Collapse
Affiliation(s)
- Huifang Ge
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| | - Biying Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| | - Ting Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| | - Yue Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| | - Fangbing Men
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| | - Songning Zhao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| |
Collapse
|