1
|
Sun L, Chen H, Xu D, Liu R, Zhao Y. Developing organs-on-chips for biomedical applications. SMART MEDICINE 2024; 3:e20240009. [PMID: 39188702 PMCID: PMC11236011 DOI: 10.1002/smmd.20240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 08/28/2024]
Abstract
In recent years, organs-on-chips have been arousing great interest for their bionic and stable construction of crucial human organs in vitro. Compared with traditional animal models and two-dimensional cell models, organs-on-chips could not only overcome the limitations of species difference and poor predict ability but also be capable of reappearing the complex cell-cell interaction, tissue interface, biofluid and other physiological conditions of humans. Therefore, organs-on-chips have been regarded as promising and powerful tools in diverse fields such as biology, chemistry, medicine and so on. In this perspective, we present a review of organs-on-chips for biomedical applications. After introducing the key elements and manufacturing craft of organs-on-chips, we intend to review their cut-edging applications in biomedical fields, incorporating biological analysis, drug development, robotics and so on. Finally, the emphasis is focused on the perspectives of organs-on-chips.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
| | - Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Dongyu Xu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
2
|
Hetta HF, Elsaghir A, Sijercic VC, Akhtar MS, Gad SA, Moses A, Zeleke MS, Alanazi FE, Ahmed AK, Ramadan YN. Mesenchymal stem cell therapy in diabetic foot ulcer: An updated comprehensive review. Health Sci Rep 2024; 7:e2036. [PMID: 38650719 PMCID: PMC11033295 DOI: 10.1002/hsr2.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background Diabetes has evolved into a worldwide public health issue. One of the most serious complications of diabetes is diabetic foot ulcer (DFU), which frequently creates a significant financial strain on patients and lowers their quality of life. Up until now, there has been no curative therapy for DFU, only symptomatic relief or an interruption in the disease's progression. Recent studies have focused attention on mesenchymal stem cells (MSCs), which provide innovative and potential treatment candidates for several illnesses as they can differentiate into various cell types. They are mostly extracted from the placenta, adipose tissue, umbilical cord (UC), and bone marrow (BM). Regardless of their origin, they show comparable features and small deviations. Our goal is to investigate MSCs' therapeutic effects, application obstacles, and patient benefit strategies for DFU therapy. Methodology A comprehensive search was conducted using specific keywords relating to DFU, MSCs, and connected topics in the databases of Medline, Scopus, Web of Science, and PubMed. The main focus of the selection criteria was on English-language literature that explored the relationship between DFU, MSCs, and related factors. Results and Discussion Numerous studies are being conducted and have demonstrated that MSCs can induce re-epithelialization and angiogenesis, decrease inflammation, contribute to immunological modulation, and subsequently promote DFU healing, making them a promising approach to treating DFU. This review article provides a general snapshot of DFU (including clinical presentation, risk factors and etiopathogenesis, and conventional treatment) and discusses the clinical progress of MSCs in the management of DFU, taking into consideration the side effects and challenges during the application of MSCs and how to overcome these challenges to achieve maximum benefits. Conclusion The incorporation of MSCs in the management of DFU highlights their potential as a feasible therapeutic strategy. Establishing a comprehensive understanding of the complex relationship between DFU pathophysiology, MSC therapies, and related obstacles is essential for optimizing therapy outcomes and maximizing patient benefits.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative MedicineFaculty of Pharmacy, University of TabukTabukSaudi Arabia
- Department of Medical Microbiology and ImmunologyFaculty of Medicine, Assiut UniversityAssiutEgypt
| | - Alaa Elsaghir
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| | | | | | - Sayed A. Gad
- Faculty of Medicine, Assiut UniversityAssiutEgypt
| | | | - Mahlet S. Zeleke
- Menelik II Medical and Health Science College, Kotebe Metropolitan UniversityAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and ToxicologyFaculty of Pharmacy, University of TabukTabukSaudi Arabia
| | | | - Yasmin N. Ramadan
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| |
Collapse
|
3
|
Mohammed RN, Aziz Sadat SA, Hassan SMA, Mohammed HF, Ramzi DO. Combinatorial Influence of Bone Marrow Aspirate Concentrate (BMAC) and Platelet-Rich Plasma (PRP) Treatment on Cutaneous Wound Healing in BALB/c Mice. J Burn Care Res 2024; 45:59-69. [PMID: 37262317 PMCID: PMC11023107 DOI: 10.1093/jbcr/irad080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Indexed: 06/03/2023]
Abstract
Bone marrow, a soft spongy tissue, is containing mesenchymal stem cells, that are well-recognized according to their self-renewability and stemness. Therefore, we hypothesized that bone marrow aspirate concentrate (BMAC) could have a pivotal influence on the process of wound healing in particular when it is combined with platelet-rich plasma (PRP). Thirty-six albino mice (BALB/c) were used in the study and they were grouped as negative-control, PRP treated, BMAC treated and BMAC plus PRP treated. An incisional wound (1 cm2) was made at the back of mouse and their wounds were treated according to their treatment plan and group allocations. Later, the skin at the treated wound sites was collected on days 7, 14, and 21 for histopathological investigation. The results showed that there was a statistically significant difference in BMAC+PRP-treated wounds over the rest of the treated groups in the acceleration of wound healing throughout the experiment by increasing the rate of wound contraction, re-epithelization process, and granulation tissue intensity with fluctuated infiltration in the number of the neutrophils, macrophages, and lymphocytes, also restoration of the epidermal and dermal thickness with less scarring and hair follicle regeneration vs to the negative-control, PRP and BMAC only treated groups. Our findings indicated that BMAC containing mesenchymal stem cells is an efficient approach, which can be used to enhance a smooth and physiopathological healing process, especially when it is used in combination with PRP.
Collapse
Affiliation(s)
- Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University of Sulaimaniya, Kurdistan Region, Iraq
- Department of Microbiology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Sadat Abdulla Aziz Sadat
- Department of Microbiology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Snur M A Hassan
- Department of Anatomy and Pathology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Hawraz Farhad Mohammed
- Department of Microbiology, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| | - Derin Omer Ramzi
- Department of Basic sciences, College of Veterinary Medicine, University of Sulaimnai, Suleimanyah, Iraq
| |
Collapse
|
4
|
Ebrahimi F, Pirouzmand F, Cosme Pecho RD, Alwan M, Yassen Mohamed M, Ali MS, Hormozi A, Hasanzadeh S, Daei N, Hajimortezayi Z, Zamani M. Application of mesenchymal stem cells in regenerative medicine: A new approach in modern medical science. Biotechnol Prog 2023; 39:e3374. [PMID: 37454344 DOI: 10.1002/btpr.3374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Mesenchymal Stem Cells (MSCs) are non-hematopoietic and multipotent stem cells, which have been considered in regenerative medicine. These cells are easily separated from different sources, such as bone marrow (BM), umbilical cord (UC), adipose tissue (AT), and etc. MSCs have the differentiation capability into chondrocytes, osteocytes, and adipocytes; This differentiation potential along with the paracrine properties have made them a key choice for tissue repair. MSCs also have various advantages over other stem cells, which is why they have been extensively studied in recent years. The effectiveness of MSCs-based therapies depend on several factors, including differentiation status at the time of use, concentration per injection, delivery method, the used vehicle, and the nature and extent of the damage. Although, MSCs have emerged promising sources for regenerative medicine, there are potential risks regarding their safety in their clinical use, including tumorigenesis, lack of availability, aging, and sensitivity to toxic environments. In this study, we aimed to discuss how MSCs may be useful in treating defects and diseases. To this aim, we will review recent advances of MSCs action mechanisms in regenerative medicine, as well as the most recent clinical trials. We will also have a brief overview of MSCs resources, differences between their sources, culture conditions, extraction methods, and clinical application of MSCs in various fields of regenerative medicine.
Collapse
Affiliation(s)
- Faezeh Ebrahimi
- Medical Laboratory, Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Farzaneh Pirouzmand
- Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | - Mariam Alwan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Arezoo Hormozi
- Medical Laboratory, Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajedeh Hasanzadeh
- Medical Laboratory, Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Narges Daei
- Medical Laboratory, Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zahra Hajimortezayi
- Medical Laboratory, Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Majid Zamani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Stage HJ, Trappe S, Söllig K, Trachsel DS, Kirsch K, Zieger C, Merle R, Aschenbach JR, Gehlen H. Multilineage Differentiation Potential of Equine Adipose-Derived Stromal/Stem Cells from Different Sources. Animals (Basel) 2023; 13:ani13081352. [PMID: 37106915 PMCID: PMC10135324 DOI: 10.3390/ani13081352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The investigation of multipotent stem/stromal cells (MSCs) in vitro represents an important basis for translational studies in large animal models. The study's aim was to examine and compare clinically relevant in vitro properties of equine MSCs, which were isolated from abdominal (abd), retrobulbar (rb) and subcutaneous (sc) adipose tissue by collagenase digestion (ASCs-SVF) and an explant technique (ASCs-EXP). Firstly, we examined proliferation and trilineage differentiation and, secondly, the cardiomyogenic differentiation potential using activin A, bone morphogenetic protein-4 and Dickkopf-1. Fibroblast-like, plastic-adherent ASCs-SVF and ASCs-EXP were obtained from all sources. The proliferation and chondrogenic differentiation potential did not differ significantly between the isolation methods and localizations. However, abd-ASCs-EXP showed the highest adipogenic differentiation potential compared to rb- and sc-ASCs-EXP on day 7 and abd-ASCs-SVF a higher adipogenic potential compared to abd-ASCs-EXP on day 14. Osteogenic differentiation potential was comparable at day 14, but by day 21, abd-ASCs-EXP demonstrated a higher osteogenic potential compared to abd-ASCs-SVF and rb-ASCs-EXP. Cardiomyogenic differentiation could not be achieved. This study provides insight into the proliferation and multilineage differentiation potential of equine ASCs and is expected to provide a basis for future preclinical and clinical studies in horses.
Collapse
Affiliation(s)
- Hannah J Stage
- Equine Clinic, Surgery and Radiology, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Susanne Trappe
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Katharina Söllig
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Dagmar S Trachsel
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Katharina Kirsch
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Cornelia Zieger
- Institute of Veterinary Pathology Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163 Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology and Biostatistics, Department of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Heidrun Gehlen
- Equine Clinic, Surgery and Radiology, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
6
|
Yu X, Liu P, Li Z, Zhang Z. Function and mechanism of mesenchymal stem cells in the healing of diabetic foot wounds. Front Endocrinol (Lausanne) 2023; 14:1099310. [PMID: 37008908 PMCID: PMC10061144 DOI: 10.3389/fendo.2023.1099310] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes has become a global public health problem. Diabetic foot is one of the most severe complications of diabetes, which often places a heavy economic burden on patients and seriously affects their quality of life. The current conventional treatment for the diabetic foot can only relieve the symptoms or delay the progression of the disease but cannot repair damaged blood vessels and nerves. An increasing number of studies have shown that mesenchymal stem cells (MSCs) can promote angiogenesis and re-epithelialization, participate in immune regulation, reduce inflammation, and finally repair diabetic foot ulcer (DFU), rendering it an effective means of treating diabetic foot disease. Currently, stem cells used in the treatment of diabetic foot are divided into two categories: autologous and allogeneic. They are mainly derived from the bone marrow, umbilical cord, adipose tissue, and placenta. MSCs from different sources have similar characteristics and subtle differences. Mastering their features to better select and use MSCs is the premise of improving the therapeutic effect of DFU. This article reviews the types and characteristics of MSCs and their molecular mechanisms and functions in treating DFU to provide innovative ideas for using MSCs to treat diabetic foot and promote wound healing.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Xue J, Liu Y. Mesenchymal Stromal/Stem Cell (MSC)-Based Vector Biomaterials for Clinical Tissue Engineering and Inflammation Research: A Narrative Mini Review. J Inflamm Res 2023; 16:257-267. [PMID: 36713049 PMCID: PMC9875582 DOI: 10.2147/jir.s396064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have the ability of self-renewal, the potential of multipotent differentiation, and a strong paracrine capacity, which are mainly used in the field of clinical medicine including dentistry and orthopedics. Therefore, tissue engineering research using MSCs as seed cells is a current trending directions. However, the healing effect of direct cell transplantation is unstable, and the paracrine/autocrine effects of MSCs cannot be effectively elicited. Tumorigenicity and heterogeneity are also concerns. The combination of MSCs as seed cells and appropriate vector materials can form a stable cell growth environment, maximize the secretory features of stem cells, and improve the biocompatibility and mechanical properties of vector materials that facilitate the delivery of drugs and various secretory factors. There are numerous studies on tissue engineering and inflammation of various biomaterials, mainly involving bioceramics, alginate, chitosan, hydrogels, cell sheets, nanoparticles, and three-dimensional printing. The combination of bioceramics, hydrogels and cell sheets with stem cells has demonstrated good therapeutic effects in clinical applications. The application of alginate, chitosan, and nanoparticles in animal models has also shown good prospects for clinical applications. Three-dimensional printing technology can circumvent the shortage of biomaterials, greatly improve the properties of vector materials, and facilitate the transplantation of MSCs. The purpose of this narrative review is to briefly discuss the current use of MSC-based carrier biomaterials to provide a useful resource for future tissue engineering and inflammation research using stem cells as seed cells.
Collapse
Affiliation(s)
- Junshuai Xue
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Yang Liu
- Department of General Surgery, Vascular Surgery, Qilu Hospital of Shandong University, Jinan City, People’s Republic of China,Correspondence: Yang Liu, Department of General surgery, Vascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China, Tel +86 18560088317, Email
| |
Collapse
|
8
|
Khazaei M, Khazaei F, Niromand E, Ghanbari E. Tissue engineering approaches and generation of insulin-producing cells to treat type 1 diabetes. J Drug Target 2023; 31:14-31. [PMID: 35896313 DOI: 10.1080/1061186x.2022.2107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tissue engineering (TE) has become a new effective solution to a variety of medical problems, including diabetes. Mesenchymal stem cells (MSCs), which have the ability to differentiate into endodermal and mesodermal cells, appear to be appropriate for this function. The purpose of this review was to evaluate the outcomes of various researches on the insulin-producing cells (IPCs) generation from MSCs with TE approaches to increase efficacy of type 1 diabetes treatments. The search was performed in PubMed/Medline, Scopus and Embase databases until 2021. Studies revealed that MSCs could also differentiate into IPCs under certain conditions. Therefore, a wide range of protocols have been used for this differentiation, but their effectiveness is very different. Scaffolds can provide a microenvironment that enhances the MSCs to IPCs differentiation, improves their metabolic activity and up-regulate pancreatic-specific transcription factors. They also preserve IPCs architecture and enhance insulin production as well as protect against cell death. This systematic review offers a framework for prospective research based on data. In vitro and in vivo evidence suggests that scaffold-based TE can improve the viability and function of IPCs.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khazaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Niromand
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Cao C, Zhang L, Liu F, Shen J. Therapeutic Benefits of Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome: Potential Mechanisms and Challenges. J Inflamm Res 2022; 15:5235-5246. [PMID: 36120184 PMCID: PMC9473549 DOI: 10.2147/jir.s372046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) presents as a form of acute respiratory failure resulting from non-cardiogenic pulmonary edema due to excessive alveolocapillary permeability, which may be pulmonary or systemic in origin. In the last 3 years, the coronavirus disease 2019 pandemic has resulted in an increase in ARDS cases and highlighted the challenges associated with this syndrome, as well as the unacceptably high mortality rates and lack of effective treatments. Currently, clinical treatment remains primarily supportive, including mechanical ventilation and drug-based therapy. Mesenchymal stem cell (MSC) therapies are emerging as a promising intervention in patients with ARDS and have promising therapeutic effects and safety. The therapeutic mechanisms include modifying the immune response and assisting with tissue repair. This review provides an overview of the general properties of MSCs and outlines their role in mitigating lung injury and promoting tissue repair in ARDS. Finally, we summarize the current challenges in the study of translational MSC research and identify avenues by which the discipline may progress in the coming years.
Collapse
Affiliation(s)
- Chao Cao
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College Fudan University, Shanghai, People's Republic of China
| | - Lin Zhang
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Fuli Liu
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jie Shen
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Hernández-Pérez OR, Juárez-Navarro KJ, Diaz NF, Padilla-Camberos E, Beltran-Garcia MJ, Cardenas-Castrejon D, Corona-Perez H, Hernández-Jiménez C, Díaz-Martínez NE. Biomolecules resveratrol + coenzyme Q10 recover the cell state of human mesenchymal stem cells after 1-methyl-4-phenylpyridinium-induced damage and improve proliferation and neural differentiation. Front Neurosci 2022; 16:929590. [PMID: 36117620 PMCID: PMC9471188 DOI: 10.3389/fnins.2022.929590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Neurodegenerative disorders are a critical affection with a high incidence around the world. Currently, there are no effective treatments to solve this problem. However, the application of mesenchymal stem cells (MSCs) and antioxidants in neurodegenerative diseases has shown to be a promising tool due to their multiple therapeutic effects. This work aimed to evaluate the effects of a combination of resveratrol (RSV) and coenzyme Q10 (CoQ10) on the proliferation and differentiation of MSC and the protector effects in induced damage. To characterize the MSCs, we performed flow cytometry, protocols of cellular differentiation, and immunocytochemistry analysis. The impact of RSV + CoQ10 in proliferation was evaluated by supplementing 2.5 and 10 μM of RSV + CoQ10 in a cellular kinetic for 14 days. Cell viability and lactate dehydrogenase levels (LDH) were also analyzed. The protective effect of RSV + CoQ10 was assessed by supplementing the treatment to damaged MSCs by 1-methyl-4-phenylpyridinium (MPP+); cellular viability, LDH, and reactive oxygen species (ROS) were evaluated.. MSCs expressed the surface markers CD44, CD73, CD90, and CD105 and showed multipotential ability. The combination of RSV + CoQ10 increased the proliferation potential and cell viability and decreased LDH levels. In addition, it reverted the effect of MPP+-induced damage in MSCs to enhance cell viability and decrease LDH and ROS. Finally, RSV + CoQ10 promoted the differentiation of neural progenitors. The combination of RSV + CoQ10 represents a potential treatment to improve MSCs capacities and protect against neurodegenerative damage.
Collapse
Affiliation(s)
- Oscar R. Hernández-Pérez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Karen J. Juárez-Navarro
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Nestor F. Diaz
- Instituto Nacional de Perinatología (INPER), Mexico City, Mexico
| | - Eduardo Padilla-Camberos
- Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Miguel J. Beltran-Garcia
- Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Zapopan, Mexico
| | | | | | | | - Néstor E. Díaz-Martínez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
- *Correspondence: Néstor E. Díaz-Martínez,
| |
Collapse
|
11
|
Coskun UC, Kus F, Rehman AU, Morova B, Gulle M, Baser H, Kul D, Kiraz A, Baysal K, Erten A. An Easy-to-Fabricate Microfluidic Shallow Trench Induced Three-Dimensional Cell Culturing and Imaging (STICI3D) Platform. ACS OMEGA 2022; 7:8281-8293. [PMID: 35309421 PMCID: PMC8928507 DOI: 10.1021/acsomega.1c05118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Compared to the established monolayer approach of two-dimensional cell cultures, three-dimensional (3D) cultures more closely resemble in vivo models; that is, the cells interact and form clusters mimicking their organization in native tissue. Therefore, the cellular microenvironment of these 3D cultures proves to be more clinically relevant. In this study, we present a novel easy-to-fabricate microfluidic shallow trench induced 3D cell culturing and imaging (STICI3D) platform, suitable for rapid fabrication as well as mass manufacturing. Our design consists of a shallow trench, within which various hydrogels can be formed in situ via capillary action, between and fully in contact with two side channels that allow cell seeding and media replenishment, as well as forming concentration gradients of various molecules. Compared to a micropillar-based burst valve design, which requires sophisticated microfabrication facilities, our capillary-based STICI3D can be fabricated using molds prepared with simple adhesive tapes and razors alone. The simple design supports the easy applicability of mass-production methods such as hot embossing and injection molding as well. To optimize the STICI3D design, we investigated the effect of individual design parameters such as corner radii, trench height, and surface wettability under various inlet pressures on the confinement of a hydrogel solution within the shallow trench using Computational Fluid Dynamics simulations supported with experimental validation. We identified ideal design values that improved the robustness of hydrogel confinement and reduced the effect of end-user dependent factors such as hydrogel solution loading pressure. Finally, we demonstrated cultures of human mesenchymal stem cells and human umbilical cord endothelial cells in the STICI3D to show that it supports 3D cell cultures and enables precise control of cellular microenvironment and real-time microscopic imaging. The easy-to-fabricate and highly adaptable nature of the STICI3D platform makes it suitable for researchers interested in fabricating custom polydimethylsiloxane devices as well as those who are in need of ready-to-use plastic platforms. As such, STICI3Ds can be used in imaging cell-cell interactions, angiogenesis, semiquantitative analysis of drug response in cells, and measurement of transport through cell sheet barriers.
Collapse
Affiliation(s)
- Umut Can Coskun
- Faculty
of Aeronautics and Astronautics, Istanbul
Technical University, Istanbul 34469, Turkey
| | - Funda Kus
- Department
of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey
| | - Ateeq Ur Rehman
- Biomedical
Eng. Technology Program, Foundation University
Islamabad, Islamabad Phase-I, DHA, Pakistan
| | - Berna Morova
- Department
of Physics, Koç University, Istanbul 34450, Turkey
| | - Merve Gulle
- Department
of Electronics and Communication Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Hatice Baser
- Department
of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey
| | - Demet Kul
- School of
Medicine, Department of Biochemistry, Koç
University, Istanbul 34450, Turkey
| | - Alper Kiraz
- Department
of Physics, Koç University, Istanbul 34450, Turkey
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Kemal Baysal
- School of
Medicine, Department of Biochemistry, Koç
University, Istanbul 34450, Turkey
- KUTTAM,
Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Ahmet Erten
- Department
of Electronics and Communication Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
12
|
Nath AV, Ajit S, Sekar AJ, P R AK, Muthusamy S. MicroRNA-200c/429 mediated regulation of Zeb1 augments N-Cadherin in mouse cardiac mesenchymal cells. Cell Biol Int 2021; 46:222-233. [PMID: 34747544 DOI: 10.1002/cbin.11724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022]
Abstract
Cardiac mesenchymal cells (CMCs) are a promising cell type that showed therapeutic potential in heart failure models. The analysis of the underlying mechanisms by which the CMCs improve cardiac function is on track. This study aimed to investigate the expression of N-Cadherin, a transmembrane protein that enhances cell adhesion, and recently gained attention for differentiation and augmentation of stem cell function. The mouse CMCs were isolated and analyzed for the mesenchymal markers using flow cytometry. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis were used to assess the expression of N-Cadherin along with its counteracting molecule E-Cadherin and their regulator Zeb1 in CMCs and dermal fibroblast. The expression level of miR-200c and miR-429 was analyzed using miRNA assays. Transient transfection of miR-200c followed by qRT-PCR, western blot analysis, and immunostaining was done in CMCs to analyze the expression of Zeb1, N-Cadherin, and E-Cadherin. Flow cytometry analysis showed that CMCs possess mesenchymal markers and absence for hematopoietic and immune cell markers. Increased expression of N-Cadherin and Zeb1 in CMCs was observed in CMCs at both RNA and protein levels compared to fibroblast. We found significant downregulation of miR-200c and miR-429 in CMCs. The ectopic expression of miR-200c in CMCs significantly downregulated Zeb1 and N-Cadherin expression. Our findings suggest that the significant downregulation of miR-200c/429 in CMCs maintains the expression of N-Cadherin, which may be important for its functional integrity.
Collapse
Affiliation(s)
- Asha V Nath
- TIMED, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Shilpa Ajit
- Department of Applied Biology, Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Anupama J Sekar
- Department of Applied Biology, Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Anil Kumar P R
- Department of Applied Biology, Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Senthilkumar Muthusamy
- Department of Applied Biology, Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
13
|
Maoz BM. Brain-on-a-Chip: Characterizing the next generation of advanced in vitro platforms for modeling the central nervous system. APL Bioeng 2021; 5:030902. [PMID: 34368601 PMCID: PMC8325567 DOI: 10.1063/5.0055812] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
The complexity of the human brain creates significant, almost insurmountable challenges for neurological drug development. Advanced in vitro platforms are increasingly enabling researchers to overcome these challenges, by mimicking key features of the brain's composition and functionality. Many of these platforms are called "Brains-on-a-Chip"-a term that was originally used to refer to microfluidics-based systems containing miniature engineered tissues, but that has since expanded to describe a vast range of in vitro central nervous system (CNS) modeling approaches. This Perspective seeks to refine the definition of a Brain-on-a-Chip for the next generation of in vitro platforms, identifying criteria that determine which systems should qualify. These criteria reflect the extent to which a given platform overcomes the challenges unique to in vitro CNS modeling (e.g., recapitulation of the brain's microenvironment; inclusion of critical subunits, such as the blood-brain barrier) and thereby provides meaningful added value over conventional cell culture systems. The paper further outlines practical considerations for the development and implementation of Brain-on-a-Chip platforms and concludes with a vision for where these technologies may be heading.
Collapse
Affiliation(s)
- Ben M. Maoz
- Author to whom correspondence should be addressed:
| |
Collapse
|
14
|
Mohana Devi S, Abishek Kumar B, Mahalaxmi I, Balachandar V. Leber's hereditary optic neuropathy: Current approaches and future perspectives on Mesenchymal stem cell-mediated rescue. Mitochondrion 2021; 60:201-218. [PMID: 34454075 DOI: 10.1016/j.mito.2021.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Leber's Hereditary Optic Neuropathy (LHON) is an inherited optic nerve disorder. It is a mitochondrially inherited disease due to point mutation in the MT-ND1, MT-ND4, and MT-ND6 genes of mitochondrial DNA (mtDNA) coding for complex I subunit proteins. These mutations affect the assembly of the mitochondrial complex I and hence the electron transport chain leading to mitochondrial dysfunction and oxidative damage. Optic nerve cells like retinal ganglion cells (RGCs) are more sensitive to mitochondrial loss and oxidative damage which results in the progressive degeneration of RGCs at the axonal region of the optic nerve leading to bilateral vision loss. Currently, gene therapy using Adeno-associated viral vector (AAV) is widely studied for the therapeutics application in LHON. Our review highlights the application of cell-based therapy for LHON. Mesenchymal stem cells (MSCs) are known to rescue cells from the pre-apoptotic stage by transferring healthy mitochondria through tunneling nanotubes (TNT) for cellular oxidative function. Empowering the transfer of healthy mitochondria using MSCs may replace the mitochondria with pathogenic mutation and possibly benefit the cells from progressive damage. This review discusses the ongoing research in LHON and mitochondrial transfer mechanisms to explore its scope in inherited optic neuropathy.
Collapse
Affiliation(s)
- Subramaniam Mohana Devi
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India.
| | - B Abishek Kumar
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Iyer Mahalaxmi
- Livestock Farming and Bioresource Technology, Tamil Nadu, India
| | - Vellingiri Balachandar
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| |
Collapse
|
15
|
Aranda Hernandez J, Heuer C, Bahnemann J, Szita N. Microfluidic Devices as Process Development Tools for Cellular Therapy Manufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 179:101-127. [PMID: 34410457 DOI: 10.1007/10_2021_169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cellular therapies are creating a paradigm shift in the biomanufacturing industry. Particularly for autologous therapies, small-scale processing methods are better suited than the large-scale approaches that are traditionally employed in the industry. Current small-scale methods for manufacturing personalized cell therapies, however, are labour-intensive and involve a number of 'open events'. To overcome these challenges, new cell manufacturing platforms following a GMP-in-a-box concept have recently come on the market (GMP: Good Manufacturing Practice). These are closed automated systems with built-in pumps for fluid handling and sensors for in-process monitoring. At a much smaller scale, microfluidic devices exhibit many of the same features as current GMP-in-a-box systems. They are closed systems, fluids can be processed and manipulated, and sensors integrated for real-time detection of process variables. Fabricated from polymers, they can be made disposable, i.e. single-use. Furthermore, microfluidics offers exquisite spatiotemporal control over the cellular microenvironment, promising both reproducibility and control of outcomes. In this chapter, we consider the challenges in cell manufacturing, highlight recent advances of microfluidic devices for each of the main process steps, and summarize our findings on the current state of the art. As microfluidic cell culture devices have been reported for both adherent and suspension cell cultures, we report on devices for the key process steps, or unit operations, of both stem cell therapies and cell-based immunotherapies.
Collapse
Affiliation(s)
| | - Christopher Heuer
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Nicolas Szita
- Biochemical Engineering Department, University College London (UCL), London, UK.
| |
Collapse
|
16
|
Rauti R, Ess A, Le Roi B, Kreinin Y, Epshtein M, Korin N, Maoz BM. Transforming a well into a chip: A modular 3D-printed microfluidic chip. APL Bioeng 2021; 5:026103. [PMID: 33948527 PMCID: PMC8084581 DOI: 10.1063/5.0039366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Organ-on-a-Chip platforms provide rich opportunities to observe interactions between different cell types under in vivo-like conditions, i.e., in the presence of flow. Yet, the costs and know-how required for the fabrication and implementation of these platforms restrict their accessibility. This study introduces and demonstrates a novel Insert-Chip: a microfluidic device that provides the functionality of an Organ-on-a-Chip platform, namely, the capacity to co-culture cells, expose them to flow, and observe their interactions-yet can easily be integrated into standard culture systems (e.g., well plates or multi-electrode arrays). The device is produced using stereolithograpy 3D printing and is user-friendly and reusable. Moreover, its design features overcome some of the measurement and imaging challenges characterizing standard Organ-on-a-Chip platforms. We have co-cultured endothelial and epithelial cells under flow conditions to demonstrate the functionality of the device. Overall, this novel microfluidic device is a promising platform for the investigation of biological functions, cell-cell interactions, and response to therapeutics.
Collapse
Affiliation(s)
- Rossana Rauti
- Department of Biomedical Engineering, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Adi Ess
- Sagol School of Neuroscience, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Baptiste Le Roi
- Department of Biomedical Engineering, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Yevgeniy Kreinin
- Department of Biomedical Engineering, Technion Israel
Institute of Technology, Haifa 32000, Israel
| | - Mark Epshtein
- Department of Biomedical Engineering, Technion Israel
Institute of Technology, Haifa 32000, Israel
| | - Netanel Korin
- Department of Biomedical Engineering, Technion Israel
Institute of Technology, Haifa 32000, Israel
| | - Ben M. Maoz
- Author to whom correspondence should be addressed:
| |
Collapse
|
17
|
Chen CY, Li C, Ke CJ, Sun JS, Lin FH. Kartogenin Enhances Chondrogenic Differentiation of MSCs in 3D Tri-Copolymer Scaffolds and the Self-Designed Bioreactor System. Biomolecules 2021; 11:115. [PMID: 33467170 PMCID: PMC7829855 DOI: 10.3390/biom11010115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Human cartilage has relatively slow metabolism compared to other normal tissues. Cartilage damage is of great clinical consequence since cartilage has limited intrinsic healing potential. Cartilage tissue engineering is a rapidly emerging field that holds great promise for tissue function repair and artificial/engineered tissue substitutes. However, current clinical therapies for cartilage repair are less than satisfactory and rarely recover full function or return the diseased tissue to its native healthy state. Kartogenin (KGN), a small molecule, can promote chondrocyte differentiation both in vitro and in vivo. The purpose of this research is to optimize the chondrogenic process in mesenchymal stem cell (MSC)-based chondrogenic constructs with KGN for potential use in cartilage tissue engineering. In this study, we demonstrate that KGN treatment can promote MSC condensation and cell cluster formation within a tri-copolymer scaffold. Expression of Acan, Sox9, and Col2a1 was significantly up-regulated in three-dimensional (3D) culture conditions. The lacuna-like structure showed active deposition of type II collagen and aggrecan deposition. We expect these results will open new avenues for the use of small molecules in chondrogenic differentiation protocols in combination with scaffolds, which may yield better strategies for cartilage tissue engineering.
Collapse
Affiliation(s)
- Ching-Yun Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan; or
| | - Chunching Li
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10002, Taiwan;
| | - Cherng-Jyh Ke
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung 40202, Taiwan;
- Center for General Education, China Medical University, Taichung 40202, Taiwan
- Master Program for Digital Health Innovation, China Medical University, Taichung 40202, Taiwan
- Master Program in Technology Management, China Medical University, Taichung 40202, Taiwan
| | - Jui-Sheng Sun
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei 10002, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 40202, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10002, Taiwan;
- Institute of Biomedical Engineering and Nanomedicine (I-BEN), National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|