1
|
Wright G, Chen X, Koteva K, Chou S, Guitor A, Pallant D, Lee Y, Sychantha D, French S, Hackenberger D, Robbins N, Cook M, Brown E, MacNeil L, Cowen L. A microbial natural product fractionation library screen with HRMS/MS dereplication identifies new lipopeptaibiotics against Candida auris. RESEARCH SQUARE 2025:rs.3.rs-5802877. [PMID: 39877096 PMCID: PMC11774467 DOI: 10.21203/rs.3.rs-5802877/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The rise of drug-resistant fungal pathogens, including Candida auris, highlights the urgent need for novel antifungal therapies. We developed a cost-effective platform combining microbial extract prefractionation with rapid MS/MS-bioinformatics-based dereplication to efficiently prioritize new antifungal scaffolds. Screening C. auris and C. albicans revealed novel lipopeptaibiotics, coniotins, from Coniochaeta hoffmannii WAC11161, which were undetectable in crude extracts. Coniotins exhibited potent activity against critical fungal pathogens on the WHO Fungal Priority Pathogens List, including C. albicans, C. neoformans, multidrug-resistant C. auris, and Aspergillus fumigatus, with high selectivity and low resistance potential. Coniotin A targets β-glucan, compromising fungal cell wall integrity, remodelling, and sensitizing C. auris to caspofungin. Identification of a PKS-NRPS biosynthetic gene cluster further enables the discovery of related clusters encoding potential novel lipopeptaibiotics. This study demonstrates the power of natural product prefractionation in uncovering bioactive scaffolds and introduces coniotins as promising candidates for combating multidrug-resistant fungal pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Michael Cook
- M.G. DeGroote Institute for Infectious Disease Research
| | | | | | | |
Collapse
|
2
|
Chen H, Zhong L, Zhou H, Bai X, Sun T, Wang X, Zhao Y, Ji X, Tu Q, Zhang Y, Bian X. Biosynthesis and engineering of the nonribosomal peptides with a C-terminal putrescine. Nat Commun 2023; 14:6619. [PMID: 37857663 PMCID: PMC10587159 DOI: 10.1038/s41467-023-42387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
The broad bioactivities of nonribosomal peptides rely on increasing structural diversity. Genome mining of the Burkholderiales strain Schlegelella brevitalea DSM 7029 leads to the identification of a class of dodecapeptides, glidonins, that feature diverse N-terminal modifications and a uniform putrescine moiety at the C-terminus. The N-terminal diversity originates from the wide substrate selectivity of the initiation module. The C-terminal putrescine moiety is introduced by the unusual termination module 13, the condensation domain directly catalyzes the assembly of putrescine into the peptidyl backbone, and other domains are essential for stabilizing the protein structure. Swapping of this module to another two nonribosomal peptide synthetases leads to the addition of a putrescine to the C-terminus of related nonribosomal peptides, improving their hydrophilicity and bioactivity. This study elucidates the mechanism for putrescine addition and provides further insights to generate diverse and improved nonribosomal peptides by introducing a C-terminal putrescine.
Collapse
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
- School of Medicine, Linyi University, Shuangling Road, 276000, Linyi, China
| | - Lin Zhong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Tao Sun
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Yiming Zhao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xiaoqi Ji
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Vogt E, Field CM, Sonderegger L, Künzler M. Genome sequences of Rhizopogon roseolus, Mariannaea elegans, Myrothecium verrucaria, and Sphaerostilbella broomeana and the identification of biosynthetic gene clusters for fungal peptide natural products. G3 GENES|GENOMES|GENETICS 2022; 12:6574356. [PMID: 35471554 PMCID: PMC9258550 DOI: 10.1093/g3journal/jkac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022]
Abstract
Abstract
In recent years, a variety of fungal cyclic peptides with interesting bioactivities have been discovered. For many of these peptides, the biosynthetic pathways are unknown and their elucidation often holds surprises. The cyclic and backbone N-methylated omphalotins from Omphalotus olearius were recently shown to constitute a novel class (borosins) of ribosomally synthesized and posttranslationally modified peptides, members of which are produced by many fungi, including species of the genus Rhizopogon. Other recently discovered fungal peptide macrocycles include the mariannamides from Mariannaea elegans and the backbone N-methylated verrucamides and broomeanamides from Myrothecium verrucaria and Sphaerostilbella broomeana, respectively. Here, we present draft genome sequences of four fungal species Rhizopogon roseolus, Mariannaea elegans, Myrothecium verrucaria, and Sphaerostilbella broomeana. We screened these genomes for precursor proteins or gene clusters involved in the mariannamide, verrucamide, and broomeanamide biosynthesis including a general screen for borosin-producing precursor proteins. While our genomic screen for potential ribosomally synthesized and posttranslationally modified peptide precursor proteins of mariannamides, verrucamides, broomeanamides, and borosins remained unsuccessful, antiSMASH predicted nonribosomal peptide synthase gene clusters that may be responsible for the biosynthesis of mariannamides, verrucamides, and broomeanamides. In M. verrucaria, our antiSMASH search led to a putative NRPS gene cluster with a predicted peptide product of 20 amino acids, including multiple nonproteinogenic isovalines. This cluster likely encodes a member of the peptaibols, an antimicrobial class of peptides previously isolated primarily from the Genus Trichoderma. The nonribosomal peptide synthase gene clusters discovered in our screenings are promising candidates for future research.
Collapse
Affiliation(s)
- Eva Vogt
- Institute of Microbiology, Department of Biology, ETH Zürich , Zürich CH-8093, Switzerland
| | - Christopher M Field
- Institute of Microbiology, Department of Biology, ETH Zürich , Zürich CH-8093, Switzerland
| | - Lukas Sonderegger
- Institute of Microbiology, Department of Biology, ETH Zürich , Zürich CH-8093, Switzerland
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zürich , Zürich CH-8093, Switzerland
| |
Collapse
|
4
|
Velasco-Rodríguez Ó, Fil M, Heggeset TMB, Degnes KF, Becerro-Recio D, Kolsaková K, Haugen T, Jønsson M, Toral-Martínez M, García-Estrada C, Sola-Landa A, Josefsen KD, Sletta H, Barreiro C. Characterization of Microbial Diversity in Decayed Wood from a Spanish Forest: An Environmental Source of Industrially Relevant Microorganisms. Microorganisms 2022; 10:1249. [PMID: 35744767 PMCID: PMC9227542 DOI: 10.3390/microorganisms10061249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Rotting wood is inhabited by a large diversity of bacteria, fungi, and insects with complex environmental relationships. The aim of this work was to study the composition of the microbiota (bacteria and fungi) in decaying wood from a northwest Spanish forest as a source of industrially relevant microorganisms. The analyzed forest is situated in a well-defined biogeographic area combining Mediterranean and temperate macrobioclimates. Bacterial diversity, determined by metagenome analyses, was higher than fungal heterogeneity. However, a total of 194 different cultivable bacterial isolates (mainly Bacillaceae, Streptomycetaceae, Paenibacillaceae, and Microbacteriaceae) were obtained, in contrast to 343 fungal strains (mainly Aspergillaceae, Hypocreaceae, and Coniochaetaceae). Isolates traditionally known as secondary metabolite producers, such as Actinobacteria and members of the Penicillium genus, were screened for their antimicrobial activity by the detection of antibiotic biosynthetic clusters and competitive bioassays against fungi involved in wood decay. In addition, the ability of Penicillium isolates to degrade cellulose and release ferulic acid from wood was also examined. These results present decaying wood as an ecologically rich niche and a promising source of biotechnologically interesting microorganisms.
Collapse
Affiliation(s)
- Óscar Velasco-Rodríguez
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
| | - Mariana Fil
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
| | - Tonje M. B. Heggeset
- SINTEF Industry, Department of Biotechnology and Nanomedicine, P.O. Box 4760 Torgarden, N-7465 Trondheim, Norway; (T.M.B.H.); (K.F.D.); (T.H.); (M.J.); (K.D.J.); (H.S.)
| | - Kristin F. Degnes
- SINTEF Industry, Department of Biotechnology and Nanomedicine, P.O. Box 4760 Torgarden, N-7465 Trondheim, Norway; (T.M.B.H.); (K.F.D.); (T.H.); (M.J.); (K.D.J.); (H.S.)
| | - David Becerro-Recio
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
| | - Katarina Kolsaková
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
| | - Tone Haugen
- SINTEF Industry, Department of Biotechnology and Nanomedicine, P.O. Box 4760 Torgarden, N-7465 Trondheim, Norway; (T.M.B.H.); (K.F.D.); (T.H.); (M.J.); (K.D.J.); (H.S.)
| | - Malene Jønsson
- SINTEF Industry, Department of Biotechnology and Nanomedicine, P.O. Box 4760 Torgarden, N-7465 Trondheim, Norway; (T.M.B.H.); (K.F.D.); (T.H.); (M.J.); (K.D.J.); (H.S.)
| | - Macarena Toral-Martínez
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, s/n, 24007 León, Spain
| | - Alberto Sola-Landa
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
| | - Kjell D. Josefsen
- SINTEF Industry, Department of Biotechnology and Nanomedicine, P.O. Box 4760 Torgarden, N-7465 Trondheim, Norway; (T.M.B.H.); (K.F.D.); (T.H.); (M.J.); (K.D.J.); (H.S.)
| | - Håvard Sletta
- SINTEF Industry, Department of Biotechnology and Nanomedicine, P.O. Box 4760 Torgarden, N-7465 Trondheim, Norway; (T.M.B.H.); (K.F.D.); (T.H.); (M.J.); (K.D.J.); (H.S.)
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071 León, Spain
| |
Collapse
|
5
|
Kuvarina AE, Gavryushina IA, Sykonnikov MA, Efimenko TA, Markelova NN, Bilanenko EN, Bondarenko SA, Kokaeva LY, Timofeeva AV, Serebryakova MV, Barashkova AS, Rogozhin EA, Georgieva ML, Sadykova VS. Exploring Peptaibol's Profile, Antifungal, and Antitumor Activity of Emericellipsin A of Emericellopsis Species from Soda and Saline Soils. Molecules 2022; 27:1736. [PMID: 35268835 PMCID: PMC8911692 DOI: 10.3390/molecules27051736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Features of the biochemical adaptations of alkaliphilic fungi to exist in extreme environments could promote the production of active antibiotic compounds with the potential to control microorganisms, causing infections associated with health care. Thirty-eight alkaliphilic and alkalitolerant Emericellopsis strains (E. alkalina, E. cf. maritima, E. cf. terricola, Emericellopsis sp.) isolated from different saline soda soils and belonging to marine, terrestrial, and soda soil ecological clades were investigated for emericellipsin A (EmiA) biosynthesis, an antifungal peptaibol previously described for Emericellopsis alkalina. The analysis of the Emericellopsis sp. strains belonging to marine and terrestrial clades from chloride soils revealed another novel form with a mass of 1032.7 Da, defined by MALDI-TOF Ms/Ms spectrometers, as the EmiA lacked a hydroxyl (dEmiA). EmiA displayed strong inhibitory effects on cell proliferation and viability of HCT 116 cells in a dose- and time-dependent manners and induced apoptosis.
Collapse
Affiliation(s)
- Anastasia E. Kuvarina
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
| | - Irina A. Gavryushina
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
| | - Maxim A. Sykonnikov
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
| | - Tatiana A. Efimenko
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
| | - Natalia N. Markelova
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
| | - Elena N. Bilanenko
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (E.N.B.); (S.A.B.); (L.Y.K.)
| | - Sofiya A. Bondarenko
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (E.N.B.); (S.A.B.); (L.Y.K.)
| | - Lyudmila Y. Kokaeva
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (E.N.B.); (S.A.B.); (L.Y.K.)
| | - Alla V. Timofeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.T.); (M.V.S.)
| | - Marina V. Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.T.); (M.V.S.)
| | - Anna S. Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, St. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia;
| | - Eugene A. Rogozhin
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, St. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia;
| | - Marina L. Georgieva
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (E.N.B.); (S.A.B.); (L.Y.K.)
| | - Vera S. Sadykova
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
| |
Collapse
|
6
|
Ishiuchi K, Nagumo A, Kawaguchi M, Furuyashiki H, Nakagawa H, Hirose D. Stereochemistries of Mariannamides C and D, Two Lipohexapeptides, Isolated from Mariannaea elegans NBRC102301. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Gavryushina IA, Georgieva ML, Kuvarina AE, Sadykova VS. Peptaibols as Potential Antifungal and Anticancer Antibiotics: Current and Foreseeable Development (Review). APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ekanayake D, Perlatti B, Swenson DC, Põldmaa K, Bills GF, Gloer JB. Broomeanamides: Cyclic Octapeptides from an Isolate of the Fungicolous Ascomycete Sphaerostilbella broomeana from India. JOURNAL OF NATURAL PRODUCTS 2021; 84:2028-2034. [PMID: 34191504 PMCID: PMC8314271 DOI: 10.1021/acs.jnatprod.1c00414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 06/13/2023]
Abstract
The genus Sphaerostilbella comprises fungi that colonize basidiomata of wood-inhabiting fungi, including important forest pathogens. Studies of fermentation cultures of an isolate (TFC201724) collected on the foothills of Himalayas, and closely related to S. broomeana isolates from Europe, led to the identification of a new cyclic octapeptide along with two closely related analogues (1-3) and four dioxopiperazines (4-7). The structure of the lead compound, broomeanamide A (1), was assigned mainly by analysis of 2D NMR and HRESIMS data. The structure consisted of one unit each of N-MeVal, Ala, N-MePhe, Pro, Val, and Ile and two N-MeLeu units. The amino acid sequence was determined on the basis of 2D NMR and HRESIMSMS data. NMR and HRMS data revealed that the other two new peptides have the same amino acid composition except that the Ile unit was replaced with Val in one instance (2) and the N-MeVal unit was replaced with Val in the other (3). The absolute configuration of 1 was assigned by analysis of the acid hydrolysate by application of Marfey's method using both C18 and C3 bonded-phase columns. Broomeanamide A (1) showed antifungal activity against Cryptococcus neoformans and Candida albicans, with MIC values of 8.0 and 64 μg/mL, respectively.
Collapse
Affiliation(s)
| | - Bruno Perlatti
- Texas
Therapeutic Institute, The Brown Foundation Institute of Molecular
Medicine, University of Texas Health Science
Center, 1881 East Road, Houston, Texas 77054, United
States
| | - Dale C. Swenson
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kadri Põldmaa
- Department
of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, EE-51005 Tartu, Estonia
| | - Gerald F. Bills
- Texas
Therapeutic Institute, The Brown Foundation Institute of Molecular
Medicine, University of Texas Health Science
Center, 1881 East Road, Houston, Texas 77054, United
States
| | - James B. Gloer
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
9
|
Perlatti B, Lan N, Xiang M, Earp CE, Spraker JE, Harvey CJB, Nichols CB, Alspaugh JA, Gloer JB, Bills GF. Anti-cryptococcal activity of preussolides A and B, phosphoethanolamine-substituted 24-membered macrolides, and leptosin C from coprophilous isolates of Preussia typharum. J Ind Microbiol Biotechnol 2021; 48:6152282. [PMID: 33640980 PMCID: PMC8788809 DOI: 10.1093/jimb/kuab022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/13/2021] [Indexed: 11/13/2022]
Abstract
Cryptococcus neoformans is a serious human pathogen with limited options for treatment. We have interrogated extracts from fungal fermentations to find Cryptococcus-inhibiting natural products using assays for growth inhibition and differential thermosensitivity. Extracts from fermentations of four fungal strains from wild and domestic animal dung from Arkansas and West Virginia, USA were identified as Preussia typharum. The extracts exhibited two antifungal regions. Purification of one region yielded new 24-carbon macrolides incorporating both a phosphoethanolamine unit and a bridging tetrahydrofuran ring. The structures of these metabolites were established mainly by analysis of high-resolution mass spectrometry and 2D NMR data. Relative configurations were assigned using NOESY data, and the structure assignments were supported by NMR comparison with similar compounds. These new metabolites are designated preussolides A and B. The second active region was caused by the cytotoxin, leptosin C. Genome sequencing of the four strains revealed biosynthetic gene clusters consistent with those known to encode phosphoethanolamine-bearing polyketide macrolides and the biosynthesis of dimeric epipolythiodioxopiperazines. All three compounds showed moderate to potent and selective antifungal activity toward the pathogenic yeast C. neoformans.
Collapse
Affiliation(s)
- Bruno Perlatti
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77054, USA
| | - Nan Lan
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77054, USA
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Cody E Earp
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | - Connie B Nichols
- Departments of Medicine and Molecular Genetics & Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - J Andrew Alspaugh
- Departments of Medicine and Molecular Genetics & Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - James B Gloer
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | - Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77054, USA
| |
Collapse
|