1
|
Zhang X, Gschwind J, Erben V, Bennewitz K, Li X, Sticht C, Poschet G, Hausser I, Fleming T, Szendroedi J, Nawroth PP, Kroll J. Endogenous acrolein accumulation in akr7a3 mutants causes microvascular dysfunction due to increased arachidonic acid metabolism. Redox Biol 2025; 83:103639. [PMID: 40258306 DOI: 10.1016/j.redox.2025.103639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025] Open
Abstract
Acrolein (ACR) is an endogenous reactive unsaturated aldehyde that can be detoxified by the aldo-keto reductase (AKR) enzyme system. While it has been shown that accumulation of ACR is associated with several health problems, including inflammation, oxidative stress, and cardiovascular disease the study aimed to analyze whether an endogenous accumulation of ACR is causal for vascular dysfunction in an akr7a3 mutant zebrafish model. Enlargement of the hyaloid and retinal vasculature, as well as alterations in the larval pronephros and thickening of the glomerular basement membrane in the adult kidney were found upon ACR accumulation. Transcriptomic and metabolomic analyses, followed by functional validation, revealed that the up-regulation of genes controlling the arachidonic acid metabolism and activation of the leukotriene pathway are responsible for the observed microvascular changes. In conclusion, the data have identified an intrinsic function of ACR in akr7a3 mutants that activates the arachidonic acid metabolism and subsequently disrupts vascular integrity by promoting an inflammatory response. Thus, ACR is causal in the development of vascular disease.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Vascular Biology, ECAS, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Johannes Gschwind
- Department of Vascular Biology, ECAS, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Vanessa Erben
- Department of Vascular Biology, ECAS, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology, ECAS, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Xiaogang Li
- Department of Vascular Biology, ECAS, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, 69120, Germany
| | - Ingrid Hausser
- Institute of Pathology IPH, EM Lab, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Peter Paul Nawroth
- Medical Clinic and Polyclinic II, University Hospital Dresden, Dresden, 01307, Germany
| | - Jens Kroll
- Department of Vascular Biology, ECAS, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.
| |
Collapse
|
2
|
Gao X, Xu S, Lv N, Li C, Lv Y, Cheng K, Xu H. Independent and combined associations of VOCs exposure and MetS in the NHANES 2017-2020. Front Public Health 2025; 13:1572360. [PMID: 40190764 PMCID: PMC11968655 DOI: 10.3389/fpubh.2025.1572360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction As a worldwide public health concern, Metabolic syndrome (MetS) seriously endangers human health and life safety. It`s reported that there is a strong association between chemical pollutants and the development of MetS in recent years. Volatile organic compounds (VOCs), the primary emission pollutant in atmospheric pollutants, were closely associated with development of chronic diseases. However, the association between VOCs exposure and MetS is unclear. We aimed to investigate the association between VOCs and MetS and identify the behavioral patterns in which MetS patients may be exposed to VOCs. Methods We conducted a cross-sectional data analysis from 15,560 VOC-exposed participants in the NHANES. Multivariable logistic regression model, weighted quantile sum (WQS) regression model, and Bayesian kernel machine regression (BKMR) regression model were employed to explore chemical exposure`s independent and combined effects on MetS, respectively. Results A total of 2,531 individuals were included in our study, of whom 51.28% had MetS and 48.72% were non-MetS. The logistic regression model identified the association between N-acetyl-S-(N- methylcarbamoyl)-L-cysteine (AMCC), N-acetyl-S-(2-carboxyethyl)-L-cysteine (CEMA), N-acetyl-S-(2- cyanoethyl)-L- cysteine (CYMA) and MetS. In WQS regression analysis, the WQS index was significantly associated with AMCC, trans,trans-Muconic acid (t,t-MA), N-Acetyl-S-(1-cyano-2- hydroxyethyl)- L-cysteine (CYHA), CEMA, 2-Thioxothiazolidine-4-carboxylic acid (TTCA), N-acetyl- S-(3- hydroxypropyl-1-methyl)-L-cysteine (HPMM), CYMA, N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (NADB), and N-Acetyl-S-(4-hydroxy-2-methyl-2-buten-1-yl)-L-cysteine (IPM3 cysteine). Finally, the combined association of MetS was positively associated with CEMA and CYMA in the BKMR regression model. Discussion In summary, we demonstrated that VOCs and their` metabolism were significantly associated with MetS. Compared results from these three models, CEMA and CYMA were identified as the factors associated with MetS. This study provides a research direction for the mechanism of VOCs that may induce the onset and development of MetS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Xu
- Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Wang Z, Ou J, Liang J, Song Y, Huang C, Liu F, Ou S, Zheng J. Co-Exposure to Formaldehyde and Acrolein Generates a New Protein Adduct Activating RAGE. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6931-6942. [PMID: 40052628 DOI: 10.1021/acs.jafc.4c12811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Reactive carbonyl species (RCS), sourced exogenously and endogenously, can modify proteins to generate advanced glycation end products (AGEs), which can lead to cell damage and various diseases. To date, it has not been reported that two or more RCSs can modify a single amino acid residue in proteins. The aim of the present study is to investigate whether and how formaldehyde and acrolein simultaneously modify lysine residues in proteins and whether the resulting adducts are capable of binding to the AGE receptor (RAGE). We found that the two aldehydes can comodify lysine residues in bovine serum albumin (BSA), generating a novel adduct, 5-formyl-3-methylene-2,6-dihydropyridin-lysine (FMD-lysine). In a protein band obtained from SDS-PAGE, the modified sites account for 55% of the 60 lysine residues in BSA when the molar ratio of BSA: formaldehyde: acrolein was 1:10:10. This new adduct was identified by mass spectrometry in proteins from various organs in mice after inhalation exposure to the two aldehydes. A total of 231 FMD modification sites were detected across the heart (35), liver (29), lung (33), kidney (34), hippocampus (38), brain tissues (32), plasma (8), and aorta (22). Moreover, N-acetyl-l-lysine-FMD (N-lys-FMD) stimulated more RAGE expression in RAW264.7 cells than the two common endogenous AGEs, Nε-carboxymethyl lysine and Nε-carboxyethyl lysine. Additionally, BSA-bound FMD induced a higher RAGE expression than N-lys-FMD. The activation of RAGE by FMD-lysine may trigger an inflammatory response in vivo. Thus, protein-bound FMD-lysine may serve as a promising target for monitoring both endogenous and exogenous exposure to formaldehyde and acrolein.
Collapse
Affiliation(s)
- Zitong Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Junze Liang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuan Song
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Caihuan Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fu Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shiyi Ou
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Jie Zheng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Zhao M, Liu Z, Zhang W, Xia G, Li C, Rakariyatham K, Zhou D. Advance in aldehydes derived from lipid oxidation: A review of the formation mechanism, attributable food thermal processing technology, analytical method and toxicological effect. Food Res Int 2025; 203:115811. [PMID: 40022339 DOI: 10.1016/j.foodres.2025.115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 03/03/2025]
Abstract
The aldehydes derived from lipid oxidation are highly active electrophilic compounds including saturated aldehydes, dialdehydes, olefin aldehydes and hydroxyl aldehydes. The active groups like carbonyls, C=C bond, and hydroxyl groups make them prone to participate in chemical reactions with protein, phospholipids, which can further affect food properties. In addition, aldehydes can attack the nucleic acids and thiol group of endogenous antioxidants, result in oxidative stress and biological damage of cells, which usually serve as the direct trigger of various diseases. However, their structure-activity relationship has not received enough attention. Therefore, to provide a comprehensive understanding of reactive aldehydes on food safety and human health, the formation mechanism of aldehydes, attributable fundamental thermal processing, analytical methods, and toxicological effects based on the structure-activity relationship, have been reviewed and discussed. It was indicated that aldehydes generation exerted significant specificity of fatty acids substrate. Significant structure-activity relationships for the toxicological effects of aldehydes could be observed. Effective, accurate and eco-friendly detection techniques should be established based on the inherent advantages and limitations for food quality preservation and safety assurance.
Collapse
Affiliation(s)
- Mantong Zhao
- College of Food Science and Engineering, Hainan University, Haikou, China 570228; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China 116034; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou, China 570228
| | - Zhongyuan Liu
- College of Food Science and Engineering, Hainan University, Haikou, China 570228; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China 116034; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou, China 570228.
| | - Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou, China 570228
| | - Guanghua Xia
- College of Food Science and Engineering, Hainan University, Haikou, China 570228; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China 116034; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou, China 570228
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, Haikou, China 570228; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China 116034; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou, China 570228
| | | | - Dayong Zhou
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China 116034
| |
Collapse
|
5
|
Alhumaid A, Liu F, Shan S, Jafari E, Nourin N, Somanath PR, Narayanan SP. Spermine oxidase inhibitor, MDL 72527, reduced neovascularization, vascular permeability, and acrolein-conjugated proteins in a mouse model of ischemic retinopathy. Tissue Barriers 2025; 13:2347070. [PMID: 38682891 PMCID: PMC11970769 DOI: 10.1080/21688370.2024.2347070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Disruptions in polyamine metabolism have been identified as contributing factors to various central nervous system disorders. Our laboratory has previously highlighted the crucial role of polyamine oxidation in retinal disease models, specifically noting elevated levels of spermine oxidase (SMOX) in inner retinal neurons. Our prior research demonstrated that inhibiting SMOX with MDL 72527 protected against vascular injury and microglial activation induced by hyperoxia in the retina. However, the effects of SMOX inhibition on retinal neovascularization and vascular permeability, along with the underlying molecular mechanisms of vascular protection, remain incompletely understood. In this study, we utilized the oxygen-induced retinopathy (OIR) model to explore the impact of SMOX inhibition on retinal neovascularization, vascular permeability, and the molecular mechanisms underlying MDL 72527-mediated vasoprotection in the OIR retina. Our findings indicate that inhibiting SMOX with MDL 72527 mitigated vaso-obliteration and neovascularization in the OIR retina. Additionally, it reduced OIR-induced vascular permeability and Claudin-5 expression, suppressed acrolein-conjugated protein levels, and downregulated P38/ERK1/2/STAT3 signaling. Furthermore, our results revealed that treatment with BSA-Acrolein conjugates significantly decreased the viability of human retinal endothelial cells (HRECs) and activated P38 signaling. These observations contribute valuable insights into the potential therapeutic benefits of SMOX inhibition by MDL 72527 in ischemic retinopathy.
Collapse
Affiliation(s)
- Abdullah Alhumaid
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Fang Liu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Eissa Jafari
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Department of Pharmacy Practice, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Nadia Nourin
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
- Vascular Biology Center, Augusta University, Augusta, GA, USA
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| |
Collapse
|
6
|
Bronowicka-Szydełko A, Madziarska K, Kuzan A, Lewandowski Ł, Adamiec-Mroczek J, Pietkiewicz J, Tota M, Ziomek M, Stach W, Trocha T, Piersiak M, Pachana M, Galińska Z, Korpacki A, Dróżdż O, Matuszyk J, Mitkiewicz M, Gamian A, Gostomska-Pampuch K. Anhydrous microwave synthesis as efficient method for obtaining model advanced glycation end-products. Front Mol Biosci 2024; 11:1484196. [PMID: 39606032 PMCID: PMC11599739 DOI: 10.3389/fmolb.2024.1484196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Advanced glycation end-products (AGEs) are capable of stimulating oxidative stress and inflammation. This study investigates the synthesis of medium crosslinked AGEs (the most optimal form of AGEs because of soluble in water, used in many assays as markers) and their biochemical properties. Methods One of model protein-myoglobin from horse heart muscle (MB) and a chosen respective glycation factor - D-melibiose (mel), acrolein (ACR), D-glucose (glc), 4-hydroksynonenal (4HNE), trans-2-nonenal (T2N), methylglyoxal (MGO) - were subjected to high temperature water synthesis (HTWS) and high temperature microwave synthesis in anhydrous conditions (HTMS). The syntheses were deliberately carried out in two different conditions to check whether adding an additional energy source (microwaves) while lowering the temperature and shortening the reaction time would allow for more effective obtaining of medium-cross-linked AGEs, monitored with SDS-PAGE. Products were analyzed using fluorescence measurements, Enzyme-Linked Immunosorbent Assay (ELISA) and immunoblotting tests and electrophoretic mobility shift assay to evaluate their ability to activate nuclear factor kappa-light-chain-enhancer (NF-κB). Results Medium cross-linked AGEs were more efficiently obtained in HTMS. Fluorescence was high for MB-ACR, MB-T2N and MB-glc products. Anti-MAGE antibodies showed reactivity towards MB-mels of HTMS and HTWS, and the MB-4HNEs from HTMS. HTWS products, apart from MB-ACR, did not activate NF-κB, whereas MB-ACR, MB-4HNE, MB-mel, and MB-T2N products of HTMS strongly activated this factor that indicates their strong pro-inflammatory properties. Conclusion HTMS is a fast and efficient method of synthesizing medium cross-linked AGEs.
Collapse
Affiliation(s)
| | - Katarzyna Madziarska
- Clinical Department of Diabetology, Hypertension and Internal Disease, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Kuzan
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Łukasz Lewandowski
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Jadwiga Pietkiewicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Tota
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Ziomek
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Stach
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Tymoteusz Trocha
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marcin Piersiak
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Pachana
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Zuzanna Galińska
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Korpacki
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Olgierd Dróżdż
- Clinical Department of Ophthalmology, Wroclaw Medical University, Wroclaw, Poland
| | - Janusz Matuszyk
- Laboratory of Tumor Molecular Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Małgorzata Mitkiewicz
- Laboratory of Tumor Molecular Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Andrzej Gamian
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | |
Collapse
|
7
|
Rodriguez VI, Mammadova J, Permuth JB, Luthra A, Pena L, Friedman M, Dam A, Cappelle S, Malafa MP, Hallmon C, Miranda C, Mok SRS. Elevated Urinary Levels of Fungal and Environmental Toxins in Patients with Pancreatic Ductal Adenocarcinoma. J Gastrointest Cancer 2024; 56:4. [PMID: 39419859 PMCID: PMC11486816 DOI: 10.1007/s12029-024-01125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Risk factors for pancreatic ductal adenocarcinoma (PDAC) include tobacco/alcohol abuse, genetic predisposition, insulin resistance, and pancreatic cysts. Despite these well-established risk factors and the screening of high-risk individuals, some people still develop PDAC. This study aims to explore a potential risk factor for PDAC by investigating the association between fungal toxins (FT) and environmental toxins (ET) and the disease. We predicted that individuals with PDAC would have higher levels of these toxins compared to healthy controls. The rationale behind this hypothesis is that exposure to FT and ET might contribute to the development of PDAC by elevating cancer risk. METHODS A pilot retrospective cohort study was conducted at Moffitt Cancer Center from 2022 to 2023. This study compared FT and ET levels, demographic data, and PDAC features between subjects with PDAC and healthy controls. RESULTS Forty subjects were enrolled in the study, comprising 20 with pancreatic ductal adenocarcinoma (PDAC) and 20 healthy controls. Baseline demographics were similar between the two groups. Among the PDAC subjects, the most common tumor location was the head of the pancreas (55%); 30% had locally advanced disease, 45% were borderline resectable, and 10% had metastatic disease. Compared to the controls, subjects with PDAC had significantly higher levels of fungal toxins (FTs) including ochratoxin, gliotoxin, and citrinin (p < 0.05). Additionally, PDAC patients had significantly elevated levels of environmental toxins (ETs) such as methyl tert-butyl ether (MTBE), xylene, styrene, acrylonitrile, perchlorate, diphenyl phosphate, bromopropane, organophosphates, acrolein, tiglylglycine, and diethylphosphate (p < 0.05). CONCLUSION Our study demonstrates that subjects with PDAC, without other risk factors, have higher FT and ET levels than controls. Further studies are needed to evaluate whether ET and FT exposure can be clinically utilized as a risk factor for PDAC development.
Collapse
Affiliation(s)
- Vanessa I Rodriguez
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Jamila Mammadova
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer B Permuth
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Anjuli Luthra
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Luis Pena
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mark Friedman
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Aamir Dam
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Saraswathi Cappelle
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mokenge P Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Candice Hallmon
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Cassandra Miranda
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Shaffer R S Mok
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
8
|
Mancuso G, Violi F, Nocella C. Food contamination and cardiovascular disease: a narrative review. Intern Emerg Med 2024; 19:1693-1703. [PMID: 38743129 PMCID: PMC11405437 DOI: 10.1007/s11739-024-03610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
Cardiovascular disease is a significant cause of morbidity and mortality among non-communicable diseases worldwide. Evidence shows that a healthy dietary pattern positively influences many risk factors of cardiometabolic health, stroke, and heart disease, supported by the effectiveness of healthy diet and lifestyles for the prevention of CVD. High quality and safety of foods are prerequisites to ensuring food security and beneficial effects. Contaminants can be present in foods mainly because of contamination from environmental sources (water, air, or soil pollution), or artificially introduced by the human. Moreover, the cross-contamination or formation during food processing, food packaging, presence or contamination by natural toxins, or use of unapproved food additives and adulterants. Numerous studies reported the association between food contaminants and cardiovascular risk by demonstrating that (1) the cross-contamination or artificial sweeteners, additives, and adulterants in food processing can be the cause of the risk for major adverse cardiovascular events and (2) environmental factors, such as heavy metals and chemical products can be also significant contributors to food contamination with a negative impact on cardiovascular systems. Furthermore, oxidative stress can be a common mechanism that mediates food contamination-associated CVDs as substantiated by studies showing impaired oxidative stress biomarkers after exposure to food contaminants.This narrative review summarizes the data suggesting how food contaminants may elicit artery injury and proposing oxidative stress as a mediator of cardiovascular damage.
Collapse
Affiliation(s)
- Gerardo Mancuso
- Internal Medicine Unit, Department of Medicine and Medical Specialties, Lamezia Terme Hospital, 88046, Lamezia Terme, Italy
| | - Francesco Violi
- Department of Clinical Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
9
|
Norouzi A, Dehghani T, Eftekhar E. Water-pipe Tobacco Components and their Association with Oxidative Stress. ADDICTION & HEALTH 2024; 16:205-212. [PMID: 39439856 PMCID: PMC11491865 DOI: 10.34172/ahj.1487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/01/2024] [Indexed: 10/25/2024]
Abstract
Oxidative stress (OS) results from an imbalance between the formation and detoxification of reactive species. Although reactive species at low or moderate levels play numerous physiological roles, high concentrations can lead to disturbances in signaling and metabolic pathways and cause different metabolic, chronic, and age-related disorders. Several endogenous and exogenous processes may lead to the formation of reactive species. The severity of OS can be reduced with the help of antioxidants. Tobacco is one of the most important environmental factors contributing to reactive species production. After cigarette smoking, water-pipe tobacco (WPT) smoking is ranked as the second most popular tobacco product. Its popularity is proliferating due to flavored products, social acceptability, etc. However, studies have shown that WPT smoking is associated with an increased risk of arterial stiffness, ischemic heart disease, and several cancer types. In this study, we aimed to review the most recent evidence on WPT smoking constituents and their association with OS.
Collapse
Affiliation(s)
- Aida Norouzi
- Tobacco and Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Tahereh Dehghani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
10
|
Dong R, Chang D, Shen C, Shen Y, Shen Z, Tian T, Wang J. Association of volatile organic compound exposure with metabolic syndrome and its components: a nationwide cross-sectional study. BMC Public Health 2024; 24:671. [PMID: 38431552 PMCID: PMC10909266 DOI: 10.1186/s12889-024-18198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a health issue consisting of multiple metabolic abnormalities. The impact of exposure to volatile organic compounds (VOCs) on MetS and its components remains uncertain. This study aimed to assess the associations of individual urinary metabolites of VOC (mVOCs) and mVOC mixtures with MetS and its components among the general adult population in the United States. METHODS A total of 5345 participants with eligible data were filtered from the 2011-2020 cycles of the National Health and Nutrition Examination Survey. Multivariate logistic regression models were applied to assess the associations of individual mVOCs with MetS and its components. The least absolute shrinkage and selection operator (LASSO) regression models were constructed to identify more relevant mVOCs. The weight quantile sum regression model was applied to further explore the links between mVOC co-exposure and MetS and its components. RESULTS The results indicated positive associations between multiple mVOCs and MetS, including CEMA, DHBMA, and HMPMA. CEMA was found to be positively correlated with all components of MetS. HMPMA was associated with elevated triglyceride (TG), reduced high-density lipoprotein, and fasting blood glucose (FBG) impairment; 3HPMA was associated with an elevated risk of high TG and FBG impairment; and DHBMA had positive associations with elevated TG and high blood pressure. The co-exposure of LASSO-selected mVOCs was associated with an increased risk of elevated TG, high blood pressure, and FBG impairment. CONCLUSION Positive associations of certain individual urinary mVOCs and mVOC mixtures with MetS and its components were observed by utilizing multiple statistical models and large-scale national data. These findings may serve as the theoretical basis for future experimental and mechanistic studies and have important implications for public health.
Collapse
Affiliation(s)
- Rui Dong
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Dongchun Chang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Chao Shen
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Ya Shen
- Department of Integrated Service and Management, Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Zhengkai Shen
- Department of Integrated Service and Management, Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Ting Tian
- Jiangsu Provincial Center for Disease Control and Prevention, Institute of Nutrition and Food Safety, Nanjing, China.
| | - Jie Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Wu TH, Su GY, Liu TY, Wang HT, Hwu CM. Urinary acrolein protein conjugates-to-creatinine ratio is positively associated with diabetic peripheral neuropathy in patients with type 2 diabetes mellitus. Endocr Connect 2023; 12:e230253. [PMID: 37698127 PMCID: PMC10563594 DOI: 10.1530/ec-23-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Acrolein, an unsaturated aldehyde, plays a pathological role in neurodegenerative diseases. However, less is known about its effects on peripheral neuropathy. The aim of this study was to investigate the association of acrolein and diabetic peripheral neuropathy in patients with type 2 diabetes. We recruited 148 ambulatory patients with type 2 diabetes. Each participant underwent an assessment of the Michigan Neuropathy Screening Instrument Physical Examination. Diabetic peripheral neuropathy was defined as Michigan Neuropathy Screening Instrument Physical Examination score ≥ 2.5. Serum levels and urinary levels of acrolein protein conjugates were measured. Urinary acrolein protein conjugates-to-creatinine ratios were determined. Patients with diabetic peripheral neuropathy had significantly higher urinary acrolein protein conjugates-to-creatinine ratios than those without diabetic peripheral neuropathy (7.91, 95% CI: 5.96-10.50 vs 5.31, 95% CI: 4.21-6.68, P = 0.029). Logarithmic transformation of urinary acrolein protein conjugates-to-creatinine ratios was positively associated with diabetic peripheral neuropathy in univariate logistic analysis, and the association remained significant in multivariate analysis (OR = 2.45, 95% CI: 1.12-5.34, P = 0.025). In conclusion, urinary acrolein protein conjugates-to-creatinine ratio may act as a new biomarker for diabetic peripheral neuropathy in type 2 diabetes. The involvement of acrolein in the pathogenesis of diabetic peripheral neuropathy warrants further investigation.
Collapse
Affiliation(s)
- Tsung-Hui Wu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Guan-Yu Su
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Yun Liu
- Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- PhD Program in Toxicology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| |
Collapse
|
12
|
Gupta S, Martin LM, Zhang E, Sinha PR, Landreneau J, Sinha NR, Hesemann NP, Mohan RR. Toxicological effects of ocular acrolein exposure to eyelids in rabbits in vivo. Exp Eye Res 2023; 234:109575. [PMID: 37451567 DOI: 10.1016/j.exer.2023.109575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Acrolein is a highly reactive volatile toxic chemical that injures the eyes and many organs. It has been used in wars and terrorism for wounding masses on multiple occasions and is readily accessible commercially. Our earlier studies revealed acrolein's toxicity to the cornea and witnessed damage to other ocular tissues. Eyelids play a vital role in keeping eyes mobile, moist, lubricated, and functional utilizing a range of diverse lipids produced by the Meibomian glands located in the upper and lower eyelids. This study sought to investigate acrolein's toxicity to eyelid tissues by studying the expression of inflammatory and lipid markers in rabbit eyes in vivo utilizing our reported vapor-cap model. The study was approved by the institutional animal care and use committees and followed ARVO guidelines. Twelve New Zealand White Rabbits were divided into 3 groups: Naïve (group 1), 1-min acrolein exposure (group 2), or 3-min acrolein exposure (group 3). The toxicological effects of acrolein on ocular health in live animals were monitored with regular clinical eye exams and intraocular pressure measurements and eyelid tissues post-euthanasia were subjected to H&E and Masson's trichrome histology and qRT-PCR analysis. Clinical eye examinations witnessed severely swollen eyelids, abnormal ocular discharge, chemosis, and elevated intraocular pressure (p < 0.001) in acrolein-exposed eyes. Histological studies supported clinical findings and exhibited noticeable changes in eyelid tissue morphology. Gene expression studies exhibited significantly increased expression of inflammatory and lipid mediators (LOX, PAF, Cox-2, and LTB4; p < 0.001) in acrolein-exposed eyelid tissues compared to naïve eyelid tissues. The results suggest that acrolein exposure to the eyes causes acute damage to eyelids by altering inflammatory and lipid mediators in vivo.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Lynn M Martin
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Eric Zhang
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - James Landreneau
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan P Hesemann
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
13
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
14
|
Sanotra MR, Kao SH, Lee CK, Hsu CH, Huang WC, Chang TC, Tu FY, Hsu IU, Lin YF. Acrolein adducts and responding autoantibodies correlate with metabolic disturbance in Alzheimer's disease. Alzheimers Res Ther 2023; 15:115. [PMID: 37349844 PMCID: PMC10286356 DOI: 10.1186/s13195-023-01261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is caused by many intertwining pathologies involving metabolic aberrations. Patients with metabolic syndrome (MetS) generally show hyperglycemia and dyslipidemia, which can lead to the formation of aldehydic adducts such as acrolein on peptides in the brain and blood. However, the pathogenesis from MetS to AD remains elusive. METHODS An AD cell model expressing Swedish and Indiana amyloid precursor protein (APP-Swe/Ind) in neuro-2a cells and a 3xTg-AD mouse model were used. Human serum samples (142 control and 117 AD) and related clinical data were collected. Due to the involvement of MetS in AD, human samples were grouped into healthy control (HC), MetS-like, AD with normal metabolism (AD-N), and AD with metabolic disturbance (AD-M). APP, amyloid-beta (Aß), and acrolein adducts in the samples were analyzed using immunofluorescent microscopy, histochemistry, immunoprecipitation, immunoblotting, and/or ELISA. Synthetic Aß1-16 and Aß17-28 peptides were modified with acrolein in vitro and verified using LC-MS/MS. Native and acrolein-modified Aß peptides were used to measure the levels of specific autoantibodies IgG and IgM in the serum. The correlations and diagnostic power of potential biomarkers were evaluated. RESULTS An increased level of acrolein adducts was detected in the AD model cells. Furthermore, acrolein adducts were observed on APP C-terminal fragments (APP-CTFs) containing Aß in 3xTg-AD mouse serum, brain lysates, and human serum. The level of acrolein adducts was correlated positively with fasting glucose and triglycerides and negatively with high-density lipoprotein-cholesterol, which correspond with MetS conditions. Among the four groups of human samples, the level of acrolein adducts was largely increased only in AD-M compared to all other groups. Notably, anti-acrolein-Aß autoantibodies, especially IgM, were largely reduced in AD-M compared to the MetS group, suggesting that the specific antibodies against acrolein adducts may be depleted during pathogenesis from MetS to AD. CONCLUSIONS Metabolic disturbance may induce acrolein adduction, however, neutralized by responding autoantibodies. AD may be developed from MetS when these autoantibodies are depleted. Acrolein adducts and the responding autoantibodies may be potential biomarkers for not only diagnosis but also immunotherapy of AD, especially in complication with MetS.
Collapse
Affiliation(s)
- Monika Renuka Sanotra
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Shu-Huei Kao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Chun-Hsien Hsu
- Department of Family Medicine, Taipei City Hospital, Heping Fuyou Branch, Taipei, 100, Taiwan
- Department of Family Medicine, Cardinal Tien Hospital, New Taipei, 231, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 242, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Tsuei-Chuan Chang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Fang-Yu Tu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - I-Uen Hsu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
15
|
Li G, Gu J, Zhou X, Wu T, Li X, Hua R, Hai Z, Xiao Y, Su J, Yeung WSB, Liu K, Guo C, Wang T. Mitochondrial stress response gene Clpp deficiency impairs oocyte competence and deteriorate cyclophosphamide-induced ovarian damage in young mice. Front Endocrinol (Lausanne) 2023; 14:1122012. [PMID: 37033217 PMCID: PMC10081448 DOI: 10.3389/fendo.2023.1122012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Chemotherapy is extensively used to treat cancers and is often associated with ovarian damage and leads to premature ovarian insufficiency and infertility, while the role of mitochondria during ovarian damage with chemotherapy remains unknown. This study used a mouse model with oocyte-specific deletion of mitochondrial stress response gene Caseinolytic peptidase P (Clpp) to investigate mitochondrial homeostasis in oocytes from mice receiving a chemotherapeutic drug cyclophosphamide (CTX). We found that oocyte-specific deletion of Clpp reduced fecundity of the mice at advanced age. The deletion led to meiotic defects with elevated abnormal spindle rate and aneuploidy rate with impaired mitochondrial function in the MII oocytes from 8-week-old mice. Upon CTX treatment at 8-week-old, the oocyte competence and folliculogenesis from the oocyte-specific Clpp knockout mice was further deteriorated with dramatic impairment of mitochondrial distribution and function including elevated ROS level, decreased mitochondrial membrane potential, respiratory chain activity and ATP production. Taken together, the results indicate that that ClpP was required for oocyte competence during maturation and early folliculogenesis, and its deficiency deteriorate cyclophosphamide-induced ovarian damage.
Collapse
Affiliation(s)
- Guangxin Li
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jingkai Gu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiaomei Zhou
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ting Wu
- Department of Obstetrics and Gynaecology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Xian Li
- Department of Obstetrics and Gynaecology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Renwu Hua
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhuo Hai
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuan Xiao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jiaping Su
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Willian S. B. Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynaecology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Kui Liu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of HongKong, Hong Kong, Hong Kong SAR, China
| | - Chenxi Guo
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Tianren Wang, ; Chenxi Guo,
| | - Tianren Wang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Tianren Wang, ; Chenxi Guo,
| |
Collapse
|
16
|
Zhang Z, Huang Q, Zhao D, Lian F, Li X, Qi W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front Endocrinol (Lausanne) 2023; 14:1112363. [PMID: 36824356 PMCID: PMC9941188 DOI: 10.3389/fendo.2023.1112363] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycaemia, with absolute insulin deficiency or insulin resistance as the main cause, and causes damage to various target organs including the heart, kidney and neurovascular. In terms of the pathological and physiological mechanisms of DM, oxidative stress is one of the main mechanisms leading to DM and is an important link between DM and its complications. Oxidative stress is a pathological phenomenon resulting from an imbalance between the production of free radicals and the scavenging of antioxidant systems. The main site of reactive oxygen species (ROS) production is the mitochondria, which are also the main organelles damaged. In a chronic high glucose environment, impaired electron transport chain within the mitochondria leads to the production of ROS, prompts increased proton leakage and altered mitochondrial membrane potential (MMP), which in turn releases cytochrome c (cyt-c), leading to apoptosis. This subsequently leads to a vicious cycle of impaired clearance by the body's antioxidant system, impaired transcription and protein synthesis of mitochondrial DNA (mtDNA), which is responsible for encoding mitochondrial proteins, and impaired DNA repair systems, contributing to mitochondrial dysfunction. This paper reviews the dysfunction of mitochondria in the environment of high glucose induced oxidative stress in the DM model, and looks forward to providing a new treatment plan for oxidative stress based on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Fengmei Lian
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| |
Collapse
|
17
|
Wu Y, Zou H. Research Progress on Mitochondrial Dysfunction in Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:2250. [PMID: 36421435 PMCID: PMC9686704 DOI: 10.3390/antiox11112250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 09/07/2023] Open
Abstract
Diabetic Retinopathy (DR) is one of the most important microvascular complications of diabetes mellitus, which can lead to blindness in severe cases. Mitochondria are energy-producing organelles in eukaryotic cells, which participate in metabolism and signal transduction, and regulate cell growth, differentiation, aging, and death. Metabolic changes of retinal cells and epigenetic changes of mitochondria-related genes under high glucose can lead to mitochondrial dysfunction and induce mitochondrial pathway apoptosis. In addition, mitophagy and mitochondrial dynamics also change adaptively. These mechanisms may be related to the occurrence and progression of DR, and also provide valuable clues for the prevention and treatment of DR. This article reviews the mechanism of DR induced by mitochondrial dysfunction, and the prospects for related treatment.
Collapse
Affiliation(s)
- Yiwei Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
18
|
Sinclair SH, Miller E, Talekar KS, Schwartz SS. Diabetes mellitus associated neurovascular lesions in the retina and brain: A review. FRONTIERS IN OPHTHALMOLOGY 2022; 2:1012804. [PMID: 38983558 PMCID: PMC11182219 DOI: 10.3389/fopht.2022.1012804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/14/2022] [Indexed: 07/11/2024]
Abstract
Diabetes mellitus (DM) is now recognized as a system-wide, autoimmune, inflammatory, microvascular disorder, which, in the retina and brain results in severe multifocal injury now recognized as a leading cause, world-wide, of progressive vision loss and dementia. To address this problem, resulting primarily from variations in glycemia in the prediabetic and overt diabetic states, it must be realized that, although some of the injury processes associated with diabetes may be system wide, there are varying responses, effector, and repair mechanisms that differ from organ to organ or within varying cell structures. Specifically, within the retina, and similarly within the brain cortex, lesions occur of the "neurovascular unit", comprised of focal microvascular occlusions, inflammatory endothelial and pericyte injury, with small vessel leakage resulting in injury to astrocytes, Müller cells, and microglia, all of which occur with progressive neuronal apoptosis. Such lesions are now recognized to occur before the first microaneurysms are visible to imaging by fundus cameras or before they result in detectable symptoms or signs recognizable to the patient or clinician. Treatments, therefore, which currently are not initiated within the retina until edema develops or there is progression of vascular lesions that define the current staging of retinopathy, and in the brain only after severe signs of cognitive failure. Treatments, therefore are applied relatively late with some reduction in progressive cellular injury but with resultant minimal vision or cognitive improvement. This review article will summarize the multiple inflammatory and remediation processes currently understood to occur in patients with diabetes as well as pre-diabetes and summarize as well the current limitations of methods for assessing the structural and functional alterations within the retina and brain. The goal is to attempt to define future screening, monitoring, and treatment directions that hopefully will prevent progressive injury as well as enable improved repair and attendant function.
Collapse
Affiliation(s)
- Stephen H Sinclair
- Pennsylvania College of Optometry, Salus University, Philadelphia, PA, United States
| | - Elan Miller
- Division of Vascular Neurology, Vickie & Jack Farber Institute for Institute for Neuroscience, Sidney Kimmel Medical College (SKMC) Thomas Jefferson University, Philadelphia, PA, United States
| | - Kiran S Talekar
- Department of Radiology, Section of Neuroradiology and ENT Radiology, Clinical Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging at Thomas Jefferson University Hospital and The Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC) Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - Stanley S Schwartz
- Department of Endocrinology and Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Main Line Health System, Philadelphia, PA, United States
| |
Collapse
|
19
|
Zhu Z, Lu J, Wang S, Peng W, Yang Y, Chen C, Zhou X, Yang X, Xin W, Chen X, Pi J, Yin W, Yao L, Pi R. Acrolein, an endogenous aldehyde induces synaptic dysfunction in vitro and in vivo: Involvement of RhoA/ROCK2 pathway. Aging Cell 2022; 21:e13587. [PMID: 35315217 PMCID: PMC9009232 DOI: 10.1111/acel.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Acrolein, an unsaturated aldehyde, is increased in the brain of Alzheimer's disease (AD) patients and identified as a potential inducer of sporadic AD. Synaptic dysfunction, as a typical pathological change occurring in the early stage of AD, is most closely associated with the severity of dementia. However, there remains a lack of clarity on the mechanisms of acrolein inducing AD-like pathology and synaptic impairment. In this study, acrolein-treated primary cultured neurons and mice were applied to investigate the effects of acrolein on cognitive impairment and synaptic dysfunction and their signaling mechanisms. In vitro, ROCK inhibitors, Fasudil, and Y27632, could attenuate the axon ruptures and synaptic impairment caused by acrolein. Meanwhile, RNA-seq distinct differentially expressed genes in acrolein models and initially linked activated RhoA/Rho-kinase2 (ROCK2) to acrolein-induced synaptic dysfunction, which could regulate neuronal cytoskeleton and neurite. The Morris water maze test and in vivo field excitatory postsynaptic potential (fEPSP) were performed to evaluate spatial memory and long-term potential (LTP), respectively. Acrolein induced cognitive impairment and attenuated LTP. Furthermore, the protein level of Synapsin 1 and postsynaptic density 95 (PSD95) and dendritic spines density were also decreased in acrolein-exposed mice. These changes were improved by ROCK2 inhibitor Fasudil or in ROCK2+/- mice. Together, our findings suggest that RhoA/ROCK2 signaling pathway plays a critical role in acrolein-induced synaptic damage and cognitive dysfunction, suggesting inhibition of ROCK2 should benefit to the early AD.
Collapse
Affiliation(s)
- Zeyu Zhu
- School of Medicine Sun Yat‐Sen University Guangzhou China
- School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
| | - Junfeng Lu
- School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
- Department of Internal Medicine The Affiliated Tumor Hospital of Zhengzhou University Zhengzhou China
| | - Shuyi Wang
- School of Medicine Sun Yat‐Sen University Guangzhou China
| | - Weijia Peng
- School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
| | - Yang Yang
- School of Medicine Sun Yat‐Sen University Guangzhou China
| | - Chen Chen
- School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
| | - Xin Zhou
- Zhongshan School of Medicine Sun Yat‐Sen University Guangzhou China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen Center for Disease Control and Prevention
| | - Wenjun Xin
- Zhongshan School of Medicine Sun Yat‐Sen University Guangzhou China
| | - Xinyi Chen
- School of Pharmaceutical Sciences South China Research Center for Acupuncture and Moxibustion Guangzhou University of Chinese Medicine Guangzhou China
| | - Jiakai Pi
- Guangzhou Foreign Language School Guangzhou China
| | - Wei Yin
- Zhongshan School of Medicine Sun Yat‐Sen University Guangzhou China
| | - Lin Yao
- Research Institute of Acupuncture and Moxibustion Shandong University of Traditional Chinese Medicine Jinan China
| | - Rongbiao Pi
- School of Medicine Sun Yat‐Sen University Guangzhou China
- International Joint Laboratory<SYSU‐PolyU HK> of Novel Anti‐Dementia Drugs of Guangzhou Guangzhou China
- Guangdong Province Key Laboratory of Brain Function and Disease Sun Yat‐sen University Guangzhou China
| |
Collapse
|
20
|
Jiang K, Zhou P, Zheng J, Huang C, Hu J, Guo H, Ou J, Ou S. Design of a naphthalimide-based probe for acrolein detection in foods and cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128118. [PMID: 34968849 DOI: 10.1016/j.jhazmat.2021.128118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Acrolein is a highly toxic agent that can be generated exogenously and endogenously. Therefore, a highly specific and sensitive probe for acrolein with potential applications in acrolein detection must be developed. In this research, a novel fluorescent probe named "probe for acrolein detection" (Pr-ACR) was designed and synthesized based on a naphthalimide fluorophore skeleton, and a thiol group (-SH) was introduced into its structure for acrolein recognition. The -SH traps acrolein via Michael addition and the resultant interaction product of the probe inhibits the photoinduced electron transfer process and produce a strong fluorescence at 510 nm. The probe showed high sensitivity and specificity for acrolein. HPLC-MS/MS analysis verified that it can be used to quantify acrolein in foods, such as soda crackers, red wine, and baijiu, with a fluorescence spectrophotometer. After methyl esterification, the methyl esterified probe (mPr-ACR) successfully visualised acrolein in Hela cells under a laser scanning confocal microscope. This finding proved that Pr-ACR and mPr-ACR are potential tools for the detection and visualisation of acrolein from different sources.
Collapse
Affiliation(s)
- Kaiyu Jiang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ping Zhou
- InnoStar Bio-tech Nantong Co., Ltd., Nantong 226133, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jiaman Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Hongyang Guo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China.
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China.
| |
Collapse
|
21
|
Sahu K, Singh S, Devi B, Singh C, Singh A. A review on the neuroprotective effect of berberine against chemotherapy-induced cognitive impairment. Curr Drug Targets 2022; 23:913-923. [PMID: 35240956 DOI: 10.2174/1389450123666220303094752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
Chemobrain is one of the major side effects of chemotherapy, despite increased research, the mechanisms underlying chemotherapy-induced cognitive changes remain unknown. Though, several possibly important candidate mechanisms have been identified and will be studied further in the future. Chemobrain is characterized by memory loss, cognitive impairment, difficulty in language, concentration, acceleration, and learning. The major characteristic of chemobrain is oxidative stress, mitochondrial dysfunction, immune dysregulation, hormonal alteration, white matter abnormalities, and DNA damage. Berberine (BBR) is an isoquinoline alkaloid extracted from various berberine species. BBR is a small chemical that easily passes the blood-brain barrier (BBB), making it useful for treating neurodegenerative diseases. Many studies on the pharmacology of BBR have been reported in the past. Furthermore, several clinical and experimental research indicates that BBR has a variety of pharmacological effects. So, in this review, we explore the pathogenesis of chemobrain and the neuroprotective potential of BBR against chemobrain. We also introduced the therapeutic role of BBR in various neurodegenerative and neurological diseases such as Alzheimer's, Parkinson's disease, mental depression, schizophrenia, anxiety, and also some stroke.
Collapse
Affiliation(s)
- Kuleshwar Sahu
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| | - Sukhdev Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| | - Bhawna Devi
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| | - Charan Singh
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab-144603, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| |
Collapse
|
22
|
Bunch KL, Abdelrahman AA, Caldwell RB, Caldwell RW. Novel Therapeutics for Diabetic Retinopathy and Diabetic Macular Edema: A Pathophysiologic Perspective. Front Physiol 2022; 13:831616. [PMID: 35250632 PMCID: PMC8894892 DOI: 10.3389/fphys.2022.831616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) and diabetic macular edema (DME) are retinal complications of diabetes that can lead to loss of vision and impaired quality of life. The current gold standard therapies for treatment of DR and DME focus on advanced disease, are invasive, expensive, and can trigger adverse side-effects, necessitating the development of more effective, affordable, and accessible therapies that can target early stage disease. The pathogenesis and pathophysiology of DR is complex and multifactorial, involving the interplay between the effects of hyperglycemia, hyperlipidemia, hypoxia, and production of reactive oxygen species (ROS) in the promotion of neurovascular dysfunction and immune cell polarization to a proinflammatory state. The pathophysiology of DR provides several therapeutic targets that have the potential to attenuate disease progression. Current novel DR and DME therapies under investigation include erythropoietin-derived peptides, inducers of antioxidant gene expression, activators of nitric oxide/cyclic GMP signaling pathways, and manipulation of arginase activity. This review aims to aid understanding of DR and DME pathophysiology and explore novel therapies that capitalize on our knowledge of these diabetic retinal complications.
Collapse
Affiliation(s)
- Katharine L. Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ammar A. Abdelrahman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ruth B. Caldwell
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - R. William Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
- *Correspondence: R. William Caldwell,
| |
Collapse
|
23
|
Alfarhan M, Liu F, Shan S, Pichavaram P, Somanath PR, Narayanan SP. Pharmacological Inhibition of Spermine Oxidase Suppresses Excitotoxicity Induced Neuroinflammation in Mouse Retina. Int J Mol Sci 2022; 23:2133. [PMID: 35216248 PMCID: PMC8875684 DOI: 10.3390/ijms23042133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Polyamine oxidation plays a major role in neurodegenerative diseases. Previous studies from our laboratory demonstrated that spermine oxidase (SMOX, a member of the polyamine oxidase family) inhibition using MDL 72527 reduced neurodegeneration in models of retinal excitotoxicity and diabetic retinopathy. However, the mechanisms behind the neuroprotection offered by SMOX inhibition are not completely studied. Utilizing the experimental model of retinal excitotoxicity, the present study determined the impact of SMOX blockade in retinal neuroinflammation. Our results demonstrated upregulation in the number of cells positive for Iba-1 (ionized calcium-binding adaptor molecule 1), CD (Cluster Differentiation) 68, and CD16/32 in excitotoxicity-induced retinas, while MDL 72527 treatment reduced these changes, along with increases in the number of cells positive for Arginase1 and CD206. When retinal excitotoxicity upregulated several pro-inflammatory genes, MDL 72527 treatment reduced many of them and increased anti-inflammatory genes. Furthermore, SMOX inhibition upregulated antioxidant signaling (indicated by elevated Nrf2 and HO-1 levels) and reduced protein-conjugated acrolein in excitotoxic retinas. In vitro studies using C8-B4 cells showed changes in cellular morphology and increased reactive oxygen species formation in response to acrolein (a product of SMOX activity) treatment. Overall, our findings indicate that the inhibition SMOX pathway reduced neuroinflammation and upregulated antioxidant signaling in the retina.
Collapse
Affiliation(s)
- Moaddey Alfarhan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fang Liu
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | | | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
24
|
Badiei A, Beltran WA, Aguirre GD. Altered transsulfuration pathway enzymes and redox homeostasis in inherited retinal degenerative diseases. Exp Eye Res 2022; 215:108902. [PMID: 34954206 PMCID: PMC8923955 DOI: 10.1016/j.exer.2021.108902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Retinal degenerative diseases result from apoptotic photoreceptor cell death. As endogenously produced gaseous molecules such as hydrogen sulfide (H2S) and nitric oxide (NO) play a key role in apoptosis, we compared the expression levels of genes and proteins involved in the production of these molecules in the retina of normal dogs and three canine models (rcd1, crd2, and xlpra2) of human inherited retinal degeneration (IRD). Using qRT-PCR, Western blot, and immunohistochemistry (IHC), we showed that mRNA and protein levels of cystathionine β-synthase (CBS), an enzyme that produces H2S in neurons, are increased in retinal degeneration, but those of cystathionine γ-lyase (CSE), an enzyme involved in the production of glutathione (GSH), an antioxidant, are not. Such findings suggest that increased levels of H2S that are not counterbalanced by increased antioxidant potential may contribute to disease in affected retinas. We also studied the expression of neuronal and inducible nitric oxide synthase (nNOS and iNOS), the enzymes responsible for NO production. Western blot and IHC results revealed increased levels of nNOS and iNOS, resulting in increased NO levels in mutant retinas. Finally, photoreceptors are rich in polyunsaturated fatty acids (PUFAs) that can make these cells vulnerable to oxidative damage through reactive oxygen species (ROS). Our results showed increased levels of acrolein and hydroxynonenal (4HNE), two main toxic products of PUFAs, surrounding the membranes of photoreceptors in affected canines. Increased levels of these toxic products, together with increased NO and ROS, likely render these cells susceptible to an intrinsic apoptotic pathway involving mitochondrial membranes. To assess this possibility, we measured the levels of BCL2, an anti-apoptotic protein in the mitochondrial membrane. Western blot results showed decreased levels of BCL2 protein in affected retinas. Overall, the results of this study identify alterations in the expression of enzymes directly involved in maintaining the normal redox status of the retina during retinal degeneration, thereby supporting future studies to investigate the role of H2S and NO in retinal degeneration and apoptosis.
Collapse
Affiliation(s)
- Alireza Badiei
- Department of Veterinary Medicine, College of Natural Science and Mathematics, University of Alaska Fairbanks, AK, USA; Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Accumulation of acetaldehyde in aldh2.1 zebrafish causes increased retinal angiogenesis and impaired glucose metabolism. Redox Biol 2022; 50:102249. [PMID: 35114580 PMCID: PMC8818574 DOI: 10.1016/j.redox.2022.102249] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/21/2022] [Indexed: 01/22/2023] Open
Abstract
Reactive carbonyl species (RCS) are spontaneously formed in the metabolism and modify and impair the function of DNA, proteins and lipids leading to several organ complications. In zebrafish, knockout of the RCS detoxifying enzymes glyoxalase 1 (Glo 1), aldehyde dehydrogenase 3a1 (Aldh3a1) and aldo-ketoreductase 1a1a (Akr1a1a) showed a signature of elevated RCS which specifically regulated glucose metabolism, hyperglycemia and diabetic organ damage. aldh2.1 was compensatory upregulated in glo1−/− animals and therefore this study aimed to investigate the detoxification ability for RCS by Aldh2.1 in zebrafish independent of ethanol exposure. aldh2.1 knockout zebrafish were generated using CRISPR/Cas9 and subsequently analyzed on a histological, metabolomic and transcriptomic level. aldh2.1−/− zebrafish displayed increased endogenous acetaldehyde (AA) inducing an increased angiogenesis in retinal vasculature. Expression and pharmacological interventional studies identified an imbalance of c-Jun N-terminal kinase (JNK) and p38 MAPK induced by AA, which mediate an activation of angiogenesis. Moreover, increased AA in aldh2.1−/− zebrafish did not induce hyperglycemia, instead AA inhibited the expression of glucokinase (gck) and glucose-6-phosphatase (g6pc), which led to an impaired glucose metabolism. In conclusion, the data have identified AA as the preferred substrate for Aldh2.1's detoxification ability, which subsequently causes microvascular organ damage and impaired glucose metabolism. ALDH2.1 was compensatory upregulated in glyoxalase 1 zebrafish mutants. Loss of ALDH2.1 increases acetaldehyde leading to vascular retinal alterations. Acetaldehyde controls glucose metabolism via glucose-6-phosphate and glucokinase. Altered JNK and p38 cause microvascular complications.
Collapse
|
26
|
Sahu K, Langeh U, Singh C, Singh A. Crosstalk between anticancer drugs and mitochondrial functions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100047. [PMID: 34909674 PMCID: PMC8663961 DOI: 10.1016/j.crphar.2021.100047] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy is an important component of cancer treatment, which has side effects like vomiting, peripheral neuropathy, and numerous organ toxicity but the most significant outcomes of chemotherapy are cognitive impairment, which is mainly referred to as chemobrain or CICI (chemotherapy-induced cognitive impairment). It is characterized by difficulty with language, concentrating, processing speed, learning, and memory, as it affects the hippocampus areas of the brain. Mitochondrial dysfunction and oxidative stress are one of the major mechanisms causing chemobrain. The generation of reactive oxygen species (byproducts of oxidative phosphorylation) mainly occurs in mitochondria that play a prominent role in the induction of oxidative stress. The homeostasis of ROS in the mitochondria is maintained by mitochondrial antioxidant mechanism via enzymes like catalase, glutathione, and superoxide dismutase. Lungs and breast cancer are the two most common types of cancer, which are the most leading cancers in the world with about 4.18 million cases. In this review we exposed the current knowledge regarding chemotherapy-induced oxidative stress and mitochondrial dysfunction to cause cognitive impairment.We especially focused on the antineoplastic agent (ADRIAMYCIN, CYCLOPHOSPHAMIDE), platinum group agent CISPLATIN, antimetabolite agents (METHOTREXATE), and nitrogen mustard agent (CARMUSTINE) which increase oxidative stress and inflammatory markers in the PNS (peripheral nervous system) as well as the central nervous system. We also highlight the behavioural and functional changes in the brain.
Collapse
Affiliation(s)
- Kuleshwar Sahu
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Urvashi Langeh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
27
|
Lassé M, Stampfli AR, Orban T, Bothara RK, Gerrard JA, Fairbanks AJ, Pattinson NR, Dobson RCJ. Reaction dynamics and residue identification of haemoglobin modification by acrolein, a lipid-peroxidation by-product. Biochim Biophys Acta Gen Subj 2021; 1865:130013. [PMID: 34534644 DOI: 10.1016/j.bbagen.2021.130013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Lipid hydroperoxides decompose to reactive aldehydes, such as acrolein. Measurement of oxidative stress markers in the clinic could improve risk stratification for patients. METHODS To aid the development of diagnostic oxidative stress markers, we defined the acrolein modifications of haemoglobin using mass spectrometry. RESULTS Acrolein modifications have little effect on the secondary structure of haemoglobin. They do not disrupt the quaternary structure, but instead promote crosslinked octamers. For acrolein modified haemoglobin the response to O2 binding is altered such that cooperativity is lost. Mass spectrometry experiments at a 1:1 acrolein:haemoglobin molar ratio demonstrate that the α-chain quickly forms an aza-Michael adduct (+56 Da), which then forms a more stable adduct, Nε-(3-methylpyridinium)lysine (MP-lysine, +76 Da) over 7 days. The β-chain remains relatively unchanged over the duration of the 7 days and the aza-Michael adduct is dominant. At 2:1 and 5:1 molar ratios the α-chain was consistently modified at K7, H20, H50, and the β-chain at C93 and H97 with the aza-Michael adduct. Beyond 5 h, an MP-adduct (+76 Da) was located predominantly at K7 of the α-chain, while an FDP-adduct (+94 Da) was observed at K95 of the β-chain. CONCLUSIONS We have generated qualitative evidence identifying the acrolein target sites on haemoglobin, a potential oxidative stress marker that is easily measured in circulation. GENERAL SIGNIFICANCE We provide data for the community to develop targeted mass spectrometric or immunometric assays for acrolein modified haemoglobin to further validate the potential of haemoglobin as an oxidative stress marker in patients .
Collapse
Affiliation(s)
- Moritz Lassé
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Anja R Stampfli
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Thomas Orban
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Juliet A Gerrard
- Faculty of Science, Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Antony J Fairbanks
- Biomolecular Interaction Centre, and School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Neil R Pattinson
- Canterbury Scientific Ltd, 71 Whiteleigh Ave, Christchurch, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Biol21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
28
|
Song X, Lu Y, Lu Y, Lv L. Adduct Formation of Acrolein with Cyanidin-3- O-glucoside and Its Degradants/Metabolites during Thermal Processing or In Vivo after Consumption of Red Bayberry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13143-13154. [PMID: 34714663 DOI: 10.1021/acs.jafc.1c05727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acrolein (ACR) derives from the external environment and the endogenous metabolism of organisms. It has super-reactivity and can induce various diseases. We investigated the capacity of cyanidin-3-O-glucoside (C3G) and its degradants/metabolites to capture ACR during thermal processing or in vivo. Our results indicated that both C3G and its degradants, including phloroglucinaldehyde (PGA) and protocatechuic acid (PCA), could efficiently trap ACR to form adducts, such as C3G-ACR, C3G-2ACR, PGA-ACR, PGA-2ACR, PCA-ACR, and PCA-2ACR. Additionally, these adducts were detected in commercial canned red bayberry products. The adducts of C3G and its metabolites conjugated with ACR, such as C3G-ACR, C3G-2ACR, PGA-ACR, and 4-hydroxybenzoic-acid-ACR (4-HBA-ACR), were also detected in mice feces treated with C3G by oral gavage, where the adduct level was dose-dependent. A similar pattern was observed in tests on human consumption of red bayberry. In human urine, only PGA-2ACR and 4-HBA-ACR, were found, whereas C3G-ACR, C3G-2ACR, myricetin-3-O-rhamnoside-ACR (M3R-ACR), PGA-2ACR, 4-HBA-ACR and ferulic acid-ACR (FA-ACR) were detected in human feces following administration of red bayberry. Our results are the first demonstration that C3G and its metabolites can capture ACR in vitro and in vivo (mice and humans) and present a novel strategy, the development of C3G as a promising ACR inhibitor.
Collapse
Affiliation(s)
- Xiaoli Song
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yang Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yongling Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
29
|
Qi H, Schmöhl F, Li X, Qian X, Tabler CT, Bennewitz K, Sticht C, Morgenstern J, Fleming T, Volk N, Hausser I, Heidenreich E, Hell R, Nawroth PP, Kroll J. Reduced Acrolein Detoxification in akr1a1a Zebrafish Mutants Causes Impaired Insulin Receptor Signaling and Microvascular Alterations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101281. [PMID: 34278746 PMCID: PMC8456208 DOI: 10.1002/advs.202101281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/01/2021] [Indexed: 05/03/2023]
Abstract
Increased acrolein (ACR), a toxic metabolite derived from energy consumption, is associated with diabetes and its complications. However, the molecular mechanisms are mostly unknown, and a suitable animal model with internal increased ACR does not exist for in vivo studying so far. Several enzyme systems are responsible for acrolein detoxification, such as Aldehyde Dehydrogenase (ALDH), Aldo-Keto Reductase (AKR), and Glutathione S-Transferase (GST). To evaluate the function of ACR in glucose homeostasis and diabetes, akr1a1a-/- zebrafish mutants are generated using CRISPR/Cas9 technology. Accumulated endogenous acrolein is confirmed in akr1a1a-/- larvae and livers of adults. Moreover, a series of experiments are performed regarding organic alterations, the glucose homeostasis, transcriptome, and metabolomics in Tg(fli1:EGFP) zebrafish. Akr1a1a-/- larvae display impaired glucose homeostasis and angiogenic retina hyaloid vasculature, which are caused by reduced acrolein detoxification ability and increased internal ACR concentration. The effects of acrolein on hyaloid vasculature can be reversed by acrolein-scavenger l-carnosine treatment. In adult akr1a1a-/- mutants, impaired glucose tolerance accompanied by angiogenic retina vessels and glomerular basement membrane thickening, consistent with an early pathological appearance in diabetic retinopathy and nephropathy, are observed. Thus, the data strongly suggest impaired ACR detoxification and elevated ACR concentration as biomarkers and inducers for diabetes and diabetic complications.
Collapse
Affiliation(s)
- Haozhe Qi
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
- Department of Vascular SurgeryRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Felix Schmöhl
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Xiaogang Li
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Xin Qian
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Christoph T. Tabler
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Carsten Sticht
- NGS Core FacilityMedical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University HospitalHeidelberg69120Germany
- German Center for Diabetes Research (DZD)Neuherberg85764Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University HospitalHeidelberg69120Germany
- German Center for Diabetes Research (DZD)Neuherberg85764Germany
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases (NCT) HeidelbergHeidelberg UniversityHeidelberg69120Germany
| | - Ingrid Hausser
- Institute of Pathology IPHEM LabHeidelberg University HospitalHeidelberg69120Germany
| | - Elena Heidenreich
- Metabolomics Core Technology PlatformCentre for Organismal StudiesHeidelberg UniversityHeidelberg69120Germany
| | - Rüdiger Hell
- Metabolomics Core Technology PlatformCentre for Organismal StudiesHeidelberg UniversityHeidelberg69120Germany
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University HospitalHeidelberg69120Germany
- German Center for Diabetes Research (DZD)Neuherberg85764Germany
- Joint Heidelberg‐IDC Translational Diabetes ProgramHelmholtz‐ZentrumNeuherberg85764Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| |
Collapse
|
30
|
Yumnamcha T, Guerra M, Singh LP, Ibrahim AS. Metabolic Dysregulation and Neurovascular Dysfunction in Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:E1244. [PMID: 33302369 PMCID: PMC7762582 DOI: 10.3390/antiox9121244] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy is a major cause of ocular complications in patients with type 1 and type 2 diabetes in developed countries. Due to the continued increase in the number of people with obesity and diabetes in the United States of America and globally, the incidence of diabetic retinopathy is expected to increase significantly in the coming years. Diabetic retinopathy is widely accepted as a combination of neurodegenerative and microvascular changes; however, which change occurs first is not yet understood. Although the pathogenesis of diabetic retinopathy is very complex, regulated by numerous signaling pathways and cellular processes, maintaining glucose homeostasis is still an essential component for normal physiological functioning of retinal cells. The maintenance of glucose homeostasis is finely regulated by coordinated interplay between glycolysis, Krebs cycle, and oxidative phosphorylation. Glycolysis is the most conserved metabolic pathway in biology and is tightly regulated to maintain a steady-state concentration of glycolytic intermediates; this regulation is called scheduled or regulated glycolysis. However, an abnormal increase in glycolytic flux generates large amounts of intermediate metabolites that can be shunted into different damaging pathways including the polyol pathway, hexosamine pathway, diacylglycerol-dependent activation of the protein kinase C pathway, and Amadori/advanced glycation end products (AGEs) pathway. In addition, disrupting the balance between glycolysis and oxidative phosphorylation leads to other biochemical and molecular changes observed in diabetic retinopathy including endoplasmic reticulum-mitochondria miscommunication and mitophagy dysregulation. This review will focus on how dysregulation of glycolysis contributes to diabetic retinopathy.
Collapse
Affiliation(s)
- Thangal Yumnamcha
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (M.G.); (L.P.S.)
| | - Michael Guerra
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (M.G.); (L.P.S.)
| | - Lalit Pukhrambam Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (M.G.); (L.P.S.)
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (M.G.); (L.P.S.)
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|