1
|
Naser IH, Hamza AA, Alhili A, Faisal AN, Ali MS, Kadhim NA, Suliman M, Alshahrani MY, Alawadi A. Atypical chemokine receptor 4 (ACKR4/CCX-CKR): A comprehensive exploration across physiological and pathological landscapes in contemporary research. Cell Biochem Funct 2024; 42:e4009. [PMID: 38597217 DOI: 10.1002/cbf.4009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
Atypical chemokine receptor 4 (ACKR4), also known as CCX-CKR, is a member of the chemokine receptor family that lacks typical G protein signaling activity. Instead, ACKR4 functions as a scavenger receptor that can bind and internalize a wide range of chemokines, influencing their availability and activity in the body. ACKR4 is involved in various physiological processes, such as immune cell trafficking and the development of thymus, spleen, and lymph nodes. Moreover, ACKR4 has been implicated in several pathological conditions, including cancer, heart and lung diseases. In cancer, ACKR4 plays a complex role, acting as a tumor suppressor or promoter depending on the type of cancer and the stage of the disease. For instance, ACKR4 may inhibit the growth and metastasis of breast cancer, but it may also promote the progression of hepatocellular carcinoma and gastric cancer. In inflammatory situations, ACKR4 has been found to modulate the recruitment and activation of immune cells, contributing to the pathogenesis of diseases such as myocardial infraction and pulmonary sarcoidosis. The study of ACKR4 is still ongoing, and further research is needed to fully understand its role in different physiological and pathological contexts. Nonetheless, ACKR4 represents a promising target for the development of novel therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University College, Hillah, Babil, Iraq
| | - Asia Ali Hamza
- Department of Pharmaceutics, Faculty of pharmacy, University of Al-Ameed, Karbala, Iraq
| | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | | | | | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Wierzbicki J, Bednarz-Misa I, Lewandowski Ł, Lipiński A, Kłopot A, Neubauer K, Krzystek-Korpacka M. Macrophage Inflammatory Proteins (MIPs) Contribute to Malignant Potential of Colorectal Polyps and Modulate Likelihood of Cancerization Associated with Standard Risk Factors. Int J Mol Sci 2024; 25:1383. [PMID: 38338661 PMCID: PMC10855842 DOI: 10.3390/ijms25031383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Better understanding of molecular changes leading to neoplastic transformation is prerequisite to optimize risk assessment and chemopreventive and surveillance strategies. Data on macrophage inflammatory proteins (MIPs) in colorectal carcinogenesis are scanty and their clinical relevance remains unknown. Therefore, transcript and protein expression of CCL3, CCL4, CXCL2, and CCL19 were determined in 173 and 62 patients, respectively, using RT-qPCR and immunohistochemistry with reference to polyps' characteristics. The likelihood of malignancy was modeled using probit regression. With the increasing malignancy potential of hyperplastic-tubular-tubulo-villous-villous polyps, the expression of CCL3, CCL4, and CCL19 in lesions decreased. CCL19 expression decreased also in normal mucosa while that of CXCL2 increased. Likewise, lesion CCL3 and lesion and normal mucosa CCL19 decreased and normal CXCL2 increased along the hyperplasia-low-high dysplasia grade. The bigger the lesion, the lower CCL3 and higher CXCL2 in normal mucosa. Singular polyps had higher CCL3, CCL4, and CCL19 levels in normal mucosa. CCL3, CCL4 and CXCL2 modulated the likelihood of malignancy associated with traditional risk factors. There was no correlation between the protein and mRNA expression of CCL3 and CCL19. In summary, the polyp-adjacent mucosa contributes to gaining potential for malignancy by polyps. MIPs may help in specifying cancerization probability estimated based on standard risk factors.
Collapse
Affiliation(s)
- Jarosław Wierzbicki
- Department of Minimally Invasive Surgery and Proctology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Iwona Bednarz-Misa
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (Ł.L.); (A.K.)
| | - Łukasz Lewandowski
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (Ł.L.); (A.K.)
| | - Artur Lipiński
- Department of Clinical Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Anna Kłopot
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (Ł.L.); (A.K.)
| | - Katarzyna Neubauer
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Małgorzata Krzystek-Korpacka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (Ł.L.); (A.K.)
| |
Collapse
|
3
|
Gowhari Shabgah A, Jadidi-Niaragh F, Mohammadi H, Ebrahimzadeh F, Oveisee M, Jahanara A, Gholizadeh Navashenaq J. The Role of Atypical Chemokine Receptor D6 (ACKR2) in Physiological and Pathological Conditions; Friend, Foe, or Both? Front Immunol 2022; 13:861931. [PMID: 35677043 PMCID: PMC9168005 DOI: 10.3389/fimmu.2022.861931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Chemokines exert crucial roles in inducing immune responses through ligation to their canonical receptors. Besides these receptors, there are other atypical chemokine receptors (ACKR1–4) that can bind to a wide range of chemokines and carry out various functions in the body. ACKR2, due to its ability to bind various CC chemokines, has attracted much attention during the past few years. ACKR2 has been shown to be expressed in different cells, including trophoblasts, myeloid cells, and especially lymphoid endothelial cells. In terms of molecular functions, ACKR2 scavenges various inflammatory chemokines and affects inflammatory microenvironments. In the period of pregnancy and fetal development, ACKR2 plays a pivotal role in maintaining the fetus from inflammatory reactions and inhibiting subsequent abortion. In adults, ACKR2 is thought to be a resolving agent in the body because it scavenges chemokines. This leads to the alleviation of inflammation in different situations, including cardiovascular diseases, autoimmune diseases, neurological disorders, and infections. In cancer, ACKR2 exerts conflicting roles, either tumor-promoting or tumor-suppressing. On the one hand, ACKR2 inhibits the recruitment of tumor-promoting cells and suppresses tumor-promoting inflammation to blockade inflammatory responses that are favorable for tumor growth. In contrast, scavenging chemokines in the tumor microenvironment might lead to disruption in NK cell recruitment to the tumor microenvironment. Other than its involvement in diseases, analyzing the expression of ACKR2 in body fluids and tissues can be used as a biomarker for diseases. In conclusion, this review study has tried to shed more light on the various effects of ACKR2 on different inflammatory conditions.
Collapse
Affiliation(s)
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maziar Oveisee
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Abbas Jahanara
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Jamshid Gholizadeh Navashenaq
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- *Correspondence: Jamshid Gholizadeh Navashenaq, ;
| |
Collapse
|
4
|
Lewandowska P, Szczuka I, Bednarz-Misa I, Szczęśniak-Sięga BM, Neubauer K, Mierzchała-Pasierb M, Zawadzki M, Witkiewicz W, Krzystek-Korpacka M. Modulating Properties of Piroxicam, Meloxicam and Oxicam Analogues against Macrophage-Associated Chemokines in Colorectal Cancer. Molecules 2021; 26:molecules26237375. [PMID: 34885960 PMCID: PMC8659253 DOI: 10.3390/molecules26237375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 12/24/2022] Open
Abstract
The mechanisms underlying the antineoplastic effects of oxicams have not been fully elucidated. We aimed to assess the effect of classic and novel oxicams on the expression/secretion of macrophage-associated chemokines (RTqPCR/Luminex xMAP) in colorectal adenocarcinoma cells, and on the expression of upstream the non-steroidal anti-inflammatory drug (NSAID)-activated genes NAG1, NFKBIA, MYD88, and RELA, as well as at the chemokine profiling in colorectal tumors. Meloxicam downregulated CCL4 9.9-fold, but otherwise the classic oxicams had a negligible/non-significant effect. Novel analogues with a thiazine ring substituted with arylpiperazine and benzoyl moieties significantly modulated chemokine expression to varying degree, upregulated NAG1 and NFKBIA, and downregulated MYD88. They inhibited CCL3 and CCL4, and their effect on CCL2 and CXCL2 depended on the dose and exposure. The propylene linker between thiazine and piperazine nitrogens and one arylpiperazine fluorine substituent characterized the most effective analogue. Only CCL19 and CXCL2 were not upregulated in tumors, nor was CXCL2 in tumor-adjacent tissue compared to normal mucosa. Compared to adjacent tissue, CCL4 and CXCL2 were upregulated, while CCL2, CCL8, and CCL19 were downregulated in tumors. Tumor CCL2 and CCL7 increased along with advancing T and CCL3, and CCL4 along with the N stage. The introduction of arylpiperazine and benzoyl moieties into the oxicam scaffold yields effective modulators of chemokine expression, which act by upregulating NAG1 and interfering with NF-κB signaling.
Collapse
Affiliation(s)
- Paulina Lewandowska
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (P.L.); (I.S.); (I.B.-M.); (M.M.-P.)
| | - Izabela Szczuka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (P.L.); (I.S.); (I.B.-M.); (M.M.-P.)
| | - Iwona Bednarz-Misa
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (P.L.); (I.S.); (I.B.-M.); (M.M.-P.)
| | | | - Katarzyna Neubauer
- Department and Clinics of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Magdalena Mierzchała-Pasierb
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (P.L.); (I.S.); (I.B.-M.); (M.M.-P.)
| | - Marek Zawadzki
- Department of Oncological Surgery, Regional Specialist Hospital, 51-124 Wroclaw, Poland; (M.Z.); (W.W.)
- Department of Physiotherapy, Wroclaw Medical University, 51-618 Wroclaw, Poland
| | - Wojciech Witkiewicz
- Department of Oncological Surgery, Regional Specialist Hospital, 51-124 Wroclaw, Poland; (M.Z.); (W.W.)
- Research and Development Centre, Regional Specialist Hospital, 51-124 Wroclaw, Poland
| | - Małgorzata Krzystek-Korpacka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (P.L.); (I.S.); (I.B.-M.); (M.M.-P.)
- Correspondence: ; Tel.: +48-71-784-1370
| |
Collapse
|
5
|
Wierzbicki J, Lipiński A, Bednarz-Misa I, Lewandowski Ł, Neubauer K, Lewandowska P, Krzystek-Korpacka M. Monocyte Chemotactic Proteins (MCP) in Colorectal Adenomas Are Differently Expressed at the Transcriptional and Protein Levels: Implications for Colorectal Cancer Prevention. J Clin Med 2021; 10:jcm10235559. [PMID: 34884259 PMCID: PMC8658354 DOI: 10.3390/jcm10235559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022] Open
Abstract
The expression of monocyte chemotactic proteins (MCPs) in colorectal polyps and their suitability as targets for chemoprevention is unknown, although MCP expression and secretion can be modulated by non-steroidal inflammatory drugs. This study was designed to determine the expression patterns of MCP-1/CCL2, MCP-2/CCL8, and MCP-3/CCL7 at the protein (immunohistochemistry; n = 62) and transcriptional levels (RTqPCR; n = 173) in colorectal polyps with reference to the polyp malignancy potential. All chemokines were significantly upregulated in polyps at the protein level but downregulated at the transcriptional level by 1.4-(CCL2), 1.7-(CCL7), and 2.3-fold (CCL8). There was an inverse relation between the immunoreactivity toward chemokine proteins and the number of corresponding transcripts in polyps (CCL2 and CCL7) or in normal mucosa (CCL8). The downregulation of chemokine transcripts correlated with the presence of multiple polyps (CCL2 and CCL8), a larger polyp size (CCL2, CCL7, and CCL8), predominant villous growth patterns (CCL2, CCL7 and CCL8), and high-grade dysplasia (CCL2 and CCL8). In conclusion, MCP-1/CCL2, MCP-2/CCL8, and MCP-3/CCL7 chemokines are counter-regulated at the protein and transcriptional levels. Chemokine-directed chemopreventive strategies should therefore directly neutralize MCP proteins or target molecular pathways contributing to their enhanced translation or reduced degradation, rather than aiming at CCL2, CCL7 or CCL8 expression.
Collapse
Affiliation(s)
- Jarosław Wierzbicki
- Department of Minimally Invasive Surgery and Proctology, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Correspondence: (J.W.); (M.K.-K.)
| | - Artur Lipiński
- Department of Clinical Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (Ł.L.); (P.L.)
| | - Łukasz Lewandowski
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (Ł.L.); (P.L.)
| | - Katarzyna Neubauer
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Paulina Lewandowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (Ł.L.); (P.L.)
| | - Małgorzata Krzystek-Korpacka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (Ł.L.); (P.L.)
- Correspondence: (J.W.); (M.K.-K.)
| |
Collapse
|
6
|
Szczuka I, Wierzbicki J, Serek P, Szczęśniak-Sięga BM, Krzystek-Korpacka M. Heat Shock Proteins HSPA1 and HSP90AA1 Are Upregulated in Colorectal Polyps and Can Be Targeted in Cancer Cells by Anti-Inflammatory Oxicams with Arylpiperazine Pharmacophore and Benzoyl Moiety Substitutions at Thiazine Ring. Biomolecules 2021; 11:1588. [PMID: 34827586 PMCID: PMC8615942 DOI: 10.3390/biom11111588] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022] Open
Abstract
Heat shock proteins HSPA1/Hsp70α and HSP90AA1/Hsp90α are crucial for cancer growth but their expression pattern in colorectal polyps or whether they can be modulated by oxicams is unknown. We quantified (RTqPCR) HSPA1 and HSP90AA1 expression in 50 polyp-normal pairs in relation to polyp malignancy potential and examined the effect of piroxicam, meloxicam and five novel analogues on HSPA1 and HSP90AA1 expression (mRNA/protein) in colorectal adenocarcinoma lines. HSPA1 and HSP90AA1 were upregulated in polyps by 3- and 2.9-fold. Expression ratios were higher in polyps with higher dysplasia grade and dominant villous growth pattern, mostly a result of diminished gene expression in normal tissue. Classic oxicams had negligible/non-significant effect on HSP expression. Their most effective analogue inhibited HSPA1 protein and gene by 2.5-fold and 5.7-fold in Caco-2 and by 11.5-fold and 6.8-fold in HCT116 and HSPA1 protein in HT-29 by 1.9-fold. It downregulated HSP90AA1 protein and gene by 1.9-fold and 3.7-fold in Caco-2 and by 2-fold and 5.0-fold in HCT116. HSPA1 and HSP90AA1 are upregulated in colorectal polyps reflecting their potential for malignancy. HSPA1 in cancer cells and, to lesser degree, HSP90AA1 can be reduced by oxicam analogues with thiazine ring substituted via propylene linker by arylpiperazine pharmacophore with fluorine substituents and by benzoyl moiety.
Collapse
Affiliation(s)
- Izabela Szczuka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.S.); (P.S.)
| | - Jarosław Wierzbicki
- Department of Minimally Invasive Surgery and Proctology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Paweł Serek
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.S.); (P.S.)
| | | | - Małgorzata Krzystek-Korpacka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.S.); (P.S.)
| |
Collapse
|
7
|
ACKR4 in Tumor Cells Regulates Dendritic Cell Migration to Tumor-Draining Lymph Nodes and T-Cell Priming. Cancers (Basel) 2021; 13:cancers13195021. [PMID: 34638505 PMCID: PMC8507805 DOI: 10.3390/cancers13195021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in both morbidity and mortality. Immune checkpoint blockade (ICB) treatments have been successful in a portion of mismatch repair-deficient (dMMR) CRC patients but have failed in mismatch repair-proficient (pMMR) CRC patients. Atypical Chemokine Receptor 4 (ACKR4) is implicated in regulating dendritic cell (DC) migration. However, the roles of ACKR4 in CRC development and anti-tumor immunoregulation are not known. By analyzing human CRC tissues, transgenic animals, and genetically modified CRC cells lines, our study revealed an important function of ACKR4 in maintaining CRC immune response. Loss of ACKR4 in CRC is associated with poor immune infiltration in the tumor microenvironment. More importantly, loss of ACKR4 in CRC tumor cells, rather than stromal cells, restrains the DC migration and antigen presentation to the tumor-draining lymph nodes (TdLNs). Moreover, tumors with ACKR4 knockdown become less sensitive to immune checkpoint blockade. Finally, we identified that microRNA miR-552 negatively regulates ACKR4 expression in human CRC. Taken together, our studies identified a novel and crucial mechanism for the maintenance of the DC-mediated T-cell priming in the TdLNs. These new findings demonstrate a novel mechanism leading to immunosuppression and ICB treatment resistance in CRC.
Collapse
|