1
|
Ma X, Ye F, Zhang X, Li Z, Ding Y, Lu C, Shen Y. Proansamycin B derivatives from the post-PKS modification gene deletion mutant of Amycolatopsis mediterranei S699. J Antibiot (Tokyo) 2024; 77:278-287. [PMID: 38409261 DOI: 10.1038/s41429-024-00708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Ten new proansamycin B congeners (1-10) together with one known (11) were isolated and characterized on the basis of 1D and 2D NMR spectroscopic and HRESIMS data from the Amycolatopsis mediterranei S699 ΔPM::rifR+rif-orf19 mutant. Compounds 8 and 9 featured with six-membered ring and five-membered ring hemiketal, respectively. Compounds 1, 2, and 9 displayed antibacterial activity against MRSA (methicillin-resistant Staphylococcus aureus), with the MIC (minimal inhibitory concentration) values of 64, 8, and 128 µg/mL, respectively. Compound 1 showed significant cytotoxicity against MDA-MB-231, HepG2 and Panc-1 cell lines with IC50 (half maximal inhibitory concentration) values of 2.3 ± 0.2, 2.5 ± 0.3 and 3.8 ± 0.5 μM, respectively.
Collapse
Affiliation(s)
- Xinyu Ma
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Ye
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaochun Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zhan Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yanjiao Ding
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Sood U, Müller M, Lan T, Garg G, Singhvi N, Hira P, Singh P, Nigam A, Verma M, Lata P, Kaur H, Kumar A, Rawat CD, Lal S, Aldrich C, Bechthold A, Lal R. Amycolatopsis mediterranei: A Sixty-Year Journey from Strain Isolation to Unlocking Its Potential of Rifamycin Analogue Production by Combinatorial Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2024; 87:424-438. [PMID: 38289177 DOI: 10.1021/acs.jnatprod.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ever since the isolation of Amycolatopsis mediterranei in 1957, this strain has been the focus of research worldwide. In the last 60 years or more, our understanding of the taxonomy, development of cloning vectors and conjugation system, physiology, genetics, genomics, and biosynthetic pathway of rifamycin B production in A. mediterranei has substantially increased. In particular, the development of cloning vectors, transformation system, characterization of the rifamycin biosynthetic gene cluster, and the regulation of rifamycin B production by the pioneering work of Heinz Floss have made the rifamycin polyketide biosynthetic gene cluster (PKS) an attractive target for extensive genetic manipulations to produce rifamycin B analogues which could be effective against multi-drug-resistant tuberculosis. Additionally, a better understanding of the regulation of rifamycin B production and the application of newer genomics tools, including CRISPR-assisted genome editing systems, might prove useful to overcome the limitations associated with low production of rifamycin analogues.
Collapse
Affiliation(s)
- Utkarsh Sood
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi-110007, India
| | - Moritz Müller
- Institute of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Straße 19, 79104, Freiburg, Germany
| | - Tian Lan
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gauri Garg
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi-110007, India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007, India
| | - Princy Hira
- Department of Zoology, Maitreyi College, University of Delhi, Delhi-110003, India
| | - Priya Singh
- Department of Zoology, Maitreyi College, University of Delhi, Delhi-110003, India
| | - Aeshna Nigam
- Department of Zoology, Shivaji College, University of Delhi, Delhi-110027, India
| | - Mansi Verma
- Department of Zoology, Hansraj College, University of Delhi, Delhi-110007, India
| | - Pushp Lata
- Department of Zoology, University of Delhi, Delhi-110007, India
| | - Hardeep Kaur
- Department of Zoology, Ramjas College, University of Delhi, Delhi-110007, India
| | - Abhilash Kumar
- Department of Zoology, Ramjas College, University of Delhi, Delhi-110007, India
| | - Charu Dogra Rawat
- Department of Zoology, Ramjas College, University of Delhi, Delhi-110007, India
| | - Sukanya Lal
- PhiXGen Private Limited, Gurugram, Haryana-122001, India
| | - Courtney Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Andreas Bechthold
- Institute of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Straße 19, 79104, Freiburg, Germany
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana-122001, India
- Acharya Narendra Dev College, University of Delhi, Delhi-110019, India
| |
Collapse
|
3
|
Liu L, Liu Y, Liu S, Nikandrova AA, Imamutdinova AN, Lukianov DA, Osterman IA, Sergiev PV, Zhang B, Zhang D, Li F, Sun C. Bioprospecting for the soil-derived actinobacteria and bioactive secondary metabolites on the Western Qinghai-Tibet Plateau. Front Microbiol 2023; 14:1247001. [PMID: 37886074 PMCID: PMC10599150 DOI: 10.3389/fmicb.2023.1247001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction The increase in incidence of multidrug-resistant bacteria and the inadequacy of new antimicrobial drugs have led to a widespread outbreak of bacterial antimicrobial resistance. To discover new antibiotics, biodiversity, and novelty of culturable actinobacteria dwelled in soil of the Western Qinghai-Tibet Plateau were investigated. By integrating antibacterial assay with omics tools, Amycolatopsis sp. A133, a rare actinobacterial strain and its secondary metabolites were further studied. Method Culture-dependent method was used to obtain actinobacterial strains from two soil samples collected from Ali region in Qinghai-Tibet Plateau. The cultural extractions of representative strains were assayed against "ESKAPE" pathogens by paper-disk diffusion method and the double fluorescent protein reporter "pDualrep2" system. An Amycolatopsis strain coded as A133 was prioritized and its secondary metabolites were further analyzed and annotated by omics tools including antiSMASH and GNPS (Global Natural Social Molecular Networking). The predicted rifamycin analogs produced by Amycolatopsis sp. A133 were isolated and identified by chromatographic separation, such as Sephadex LH-20 and HPLC, and spectral analysis, such as NMR and UPLC-HRESI-MS/MS, respectively. Results A total of 406 actinobacteria strains affiliated to 36 genera in 17 families of 9 orders were isolated. Out of 152 representative strains, 63 isolates exhibited antagonistic activity against at least one of the tested pathogens. Among them, 7 positive strains were identified by the "pDualrep2" system as either an inhibitor of protein translation or DNA biosynthesis. The cultural broth of Amycolatopsis sp. A133 exhibited a broader antimicrobial activity and can induce expression of TurboRFP. The secondary metabolites produced by strain A133 was annotated as rifamycins and zampanolides by antiSMASH and GNPS analysis. Five members of rifamycins, including rifamycin W, protorifamycin I, rifamycin W-M1, proansamycin B, and rifamycin S, were purified and identified. Rifamycin W-M1, was found as a new member of the naturally occurring rifamycin group of antibiotics. Discussion Assisted by omics tools, the successful and highly efficient discovery of rifamycins, a group of clinically used antibiotics from actinobacteria in Ali area encouraged us to devote more energy to explore new antibiotics from the soils on the Western Tibetan Plateau.
Collapse
Affiliation(s)
- Lifang Liu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuyu Liu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaowei Liu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Arina A. Nikandrova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Arina N. Imamutdinova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitrii A. Lukianov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Ilya A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Petr V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Benyin Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Dejun Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Feina Li
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
| | - Chenghang Sun
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
4
|
Van Anh C, Kang JS, Yang JW, Kwon JH, Heo CS, Lee HS, Shin HJ. Rifamycin-Related Polyketides from a Marine-Derived Bacterium Salinispora arenicola and Their Cytotoxic Activity. Mar Drugs 2023; 21:494. [PMID: 37755107 PMCID: PMC10532523 DOI: 10.3390/md21090494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Eight rifamycin-related polyketides were isolated from the culture broth of a marine-derived bacterium Salinispora arenicola, including five known (2-5 and 8) and three new derivatives (1, 6, and 7). The structures of the new compounds were determined by means of spectroscopic methods (HRESIMS and 1D, 2D NMR) and a comparison of their experimental data with those previously reported in the literature. The isolated compounds were evaluated for their cytotoxicity against one normal, six solid, and seven blood cancer cell lines and 1 showed moderate activity against all the tested cell lines with GI50 values ranging from 2.36 to 9.96 µM.
Collapse
Affiliation(s)
- Cao Van Anh
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea; (C.V.A.); (C.-S.H.); (H.-S.L.)
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju 28116, Republic of Korea; (J.S.K.); (J.-W.Y.); (J.-H.K.)
| | - Jeong-Wook Yang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju 28116, Republic of Korea; (J.S.K.); (J.-W.Y.); (J.-H.K.)
| | - Joo-Hee Kwon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju 28116, Republic of Korea; (J.S.K.); (J.-W.Y.); (J.-H.K.)
| | - Chang-Su Heo
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea; (C.V.A.); (C.-S.H.); (H.-S.L.)
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hwa-Sun Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea; (C.V.A.); (C.-S.H.); (H.-S.L.)
| | - Hee Jae Shin
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea; (C.V.A.); (C.-S.H.); (H.-S.L.)
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Kinner A, Nerke P, Siedentop R, Steinmetz T, Classen T, Rosenthal K, Nett M, Pietruszka J, Lütz S. Recent Advances in Biocatalysis for Drug Synthesis. Biomedicines 2022; 10:964. [PMID: 35625702 PMCID: PMC9138302 DOI: 10.3390/biomedicines10050964] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Biocatalysis is constantly providing novel options for the synthesis of active pharmaceutical ingredients (APIs). In addition to drug development and manufacturing, biocatalysis also plays a role in drug discovery and can support many active ingredient syntheses at an early stage to build up entire scaffolds in a targeted and preparative manner. Recent progress in recruiting new enzymes by genome mining and screening or adapting their substrate, as well as product scope, by protein engineering has made biocatalysts a competitive tool applied in academic and industrial spheres. This is especially true for the advances in the field of nonribosomal peptide synthesis and enzyme cascades that are expanding the capabilities for the discovery and synthesis of new bioactive compounds via biotransformation. Here we highlight some of the most recent developments to add to the portfolio of biocatalysis with special relevance for the synthesis and late-stage functionalization of APIs, in order to bypass pure chemical processes.
Collapse
Affiliation(s)
- Alina Kinner
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Philipp Nerke
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Regine Siedentop
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Till Steinmetz
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Thomas Classen
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
| | - Katrin Rosenthal
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Markus Nett
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Jörg Pietruszka
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf Located at Forschungszentrum Jülich, 52426 Jülich, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| |
Collapse
|
6
|
Han T, Zhang K, Tang G, Zhou Q. Characterizing
Post‐PKS
Modifications of
16‐Demethyl
‐rifamycin Revealed Two Dehydrogenases Diverting the Aromatization Mode of Naphthalenic Ring in Ansamycin Biosynthesis. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ting‐Yan Han
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Kai Zhang
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Gong‐Li Tang
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sublane Xiangshan Hangzhou 310024 China
| | - Qiang Zhou
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
7
|
Looking Back to Amycolatopsis: History of the Antibiotic Discovery and Future Prospects. Antibiotics (Basel) 2021; 10:antibiotics10101254. [PMID: 34680834 PMCID: PMC8532670 DOI: 10.3390/antibiotics10101254] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of antibiotic-resistant pathogenic bacteria in recent decades leads us to an urgent need for the development of new antibacterial agents. The species of the genus Amycolatopsis are known as producers of secondary metabolites that are used in medicine and agriculture. The complete genome sequences of the Amycolatopsis demonstrate a wide variety of biosynthetic gene clusters, which highlights the potential ability of actinomycetes of this genus to produce new antibiotics. In this review, we summarize information about antibiotics produced by Amycolatopsis species. This knowledge demonstrates the prospects for further study of this genus as an enormous source of antibiotics.
Collapse
|