1
|
Kardassis D, Vindis C, Stancu CS, Toma L, Gafencu AV, Georgescu A, Alexandru-Moise N, Molica F, Kwak BR, Burlacu A, Hall IF, Butoi E, Magni P, Wu J, Novella S, Gamon LF, Davies MJ, Caporali A, de la Cuesta F, Mitić T. Unravelling molecular mechanisms in atherosclerosis using cellular models and omics technologies. Vascul Pharmacol 2025; 158:107452. [PMID: 39667548 DOI: 10.1016/j.vph.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Despite the discovery and prevalent clinical use of potent lipid-lowering therapies, including statins and PCSK9 inhibitors, cardiovascular diseases (CVD) caused by atherosclerosis remain a large unmet clinical need, accounting for frequent deaths worldwide. The pathogenesis of atherosclerosis is a complex process underlying the presence of modifiable and non-modifiable risk factors affecting several cell types including endothelial cells (ECs), monocytes/macrophages, smooth muscle cells (SMCs) and T cells. Heterogeneous composition of the plaque and its morphology could lead to rupture or erosion causing thrombosis, even a sudden death. To decipher this complexity, various cell model systems have been developed. With recent advances in systems biology approaches and single or multi-omics methods researchers can elucidate specific cell types, molecules and signalling pathways contributing to certain stages of disease progression. Compared with animals, in vitro models are economical, easily adjusted for high-throughput work, offering mechanistic insights. Hereby, we review the latest work performed employing the cellular models of atherosclerosis to generate a variety of omics data. We summarize their outputs and the impact they had in the field. Challenges in the translatability of the omics data obtained from the cell models will be discussed along with future perspectives.
Collapse
Affiliation(s)
- Dimitris Kardassis
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| | - Cécile Vindis
- CARDIOMET, Center for Clinical Investigation 1436 (CIC1436)/INSERM, Toulouse, France
| | - Camelia Sorina Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Laura Toma
- Lipidomics Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Anca Violeta Gafencu
- Gene Regulation and Molecular Therapies Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Adriana Georgescu
- Pathophysiology and Cellular Pharmacology Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Nicoleta Alexandru-Moise
- Pathophysiology and Cellular Pharmacology Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Filippo Molica
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandrina Burlacu
- Department of Stem Cell Biology, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Ignacio Fernando Hall
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Elena Butoi
- Department of Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milano, Italy; IRCCS MultiMedica, Milan, Italy
| | - Junxi Wu
- University of Strathclyde, Glasgow, United Kingdom
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Luke F Gamon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Caporali
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Fernando de la Cuesta
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Tijana Mitić
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
2
|
Wu W, Wang Y, Shao X, Huang S, Wang J, Zhou S, Liu H, Lin Y, Yu P. GLP-1RA improves diabetic renal injury by alleviating glomerular endothelial cells pyrotosis via RXRα/circ8411/miR-23a-5p/ABCA1 pathway. PLoS One 2024; 19:e0314628. [PMID: 39621727 PMCID: PMC11611192 DOI: 10.1371/journal.pone.0314628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Lipotoxicity has been implicated in diabetic kidney disease (DKD). However, the role of high glucose levels in DKD and the underlying renal protective mechanisms of GLP-1 receptor agonists (GLP-1RAs) remain unclear. METHODS To investigate cholesterol accumulation, pyroptosis in glomerular endothelial cells (GEnCs), and the renal protective mechanisms of GLP-1RAs, we used various techniques, including RT-qPCR, Oil Red O staining, Western blotting, lactate dehydrogenase (LDH) activity assays, circRNA microarrays, bioinformatics analysis, gain and loss-of-function experiments, rescue experiments, and luciferase assays. Additionally, in vivo experiments were conducted using C57BL/6J and ApoE-deficient (ApoE-/-) mice. RESULTS GEnCs exposed to high glucose exhibited reduced cholesterol efflux, which was accompanied by downregulation of ATP-binding cassette transporter A1 (ABCA1) expression, cholesterol accumulation, and pyroptosis. Circ8411 was identified as a regulator of ABCA1, inhibiting miR-23a-5p through its binding to the 3'UTR. Additionally, higher glucose levels decreased circ8411 expression by inhibiting RXRα. GLP-1RAs effectively reduced cholesterol accumulation and cell pyroptosis by targeting the RXRα/circ8411/miR-23a-5p/ABCA1 pathway. In diabetic ApoE-/- mice, renal structure and function were impaired, with resulted in increased cholesterol accumulation and pyroptosis; however, GLP-1RAs treatment reversed these detrimental changes. CONCLUSIONS These findings suggest that the RXRα/circ8411/miR-23a-5p/ABCA1 pathway mediates the contribution of high glucose to lipotoxic renal injury. Targeting this pathway may represent a potential therapeutic strategy for patients with DKD and hypercholesterolemia. Moreover, GLP-1RAs may provide renal protective effects by activating this pathway.
Collapse
Affiliation(s)
- Weixi Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Yao Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Xian Shao
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Shuai Huang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Jian Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Hongyan Liu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Yao Lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Rani A, Marsche G. A Current Update on the Role of HDL-Based Nanomedicine in Targeting Macrophages in Cardiovascular Disease. Pharmaceutics 2023; 15:1504. [PMID: 37242746 PMCID: PMC10221824 DOI: 10.3390/pharmaceutics15051504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High-density lipoproteins (HDL) are complex endogenous nanoparticles involved in important functions such as reverse cholesterol transport and immunomodulatory activities, ensuring metabolic homeostasis and vascular health. The ability of HDL to interact with a plethora of immune cells and structural cells places it in the center of numerous disease pathophysiologies. However, inflammatory dysregulation can lead to pathogenic remodeling and post-translational modification of HDL, rendering HDL dysfunctional or even pro-inflammatory. Monocytes and macrophages play a critical role in mediating vascular inflammation, such as in coronary artery disease (CAD). The fact that HDL nanoparticles have potent anti-inflammatory effects on mononuclear phagocytes has opened new avenues for the development of nanotherapeutics to restore vascular integrity. HDL infusion therapies are being developed to improve the physiological functions of HDL and to quantitatively restore or increase the native HDL pool. The components and design of HDL-based nanoparticles have evolved significantly since their initial introduction with highly anticipated results in an ongoing phase III clinical trial in subjects with acute coronary syndrome. The understanding of mechanisms involved in HDL-based synthetic nanotherapeutics is critical to their design, therapeutic potential and effectiveness. In this review, we provide a current update on HDL-ApoA-I mimetic nanotherapeutics, highlighting the scope of treating vascular diseases by targeting monocytes and macrophages.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
4
|
Kunachowicz D, Ściskalska M, Kepinska M. Modulatory Effect of Lifestyle-Related, Environmental and Genetic Factors on Paraoxonase-1 Activity: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2813. [PMID: 36833509 PMCID: PMC9957543 DOI: 10.3390/ijerph20042813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Paraoxonase-1 (PON1) is a calcium-dependent, HDL-bound serum hydrolase active toward a wide variety of substrates. PON1 displays three types of activities, among which lactonase, paraoxonase, arylesterase and phosphotriesterase can be distinguished. Not only is this enzyme a major organophosphate compound detoxifier, but it is also an important constituent of the cellular antioxidant system and has anti-inflammatory and antiatherogenic functions. The concentration and activity of PON1 is highly variable among individuals, and these differences can be both of genetic origin and be a subject of epigenetic regulation. Owing to the fact that, in recent decades, the exposure of humans to an increasing number of different xenobiotics has been continuously rising, the issues concerning the role and activity of PON1 shall be reconsidered with particular attention to growing pharmaceuticals intake, dietary habits and environmental awareness. In the following manuscript, the current state of knowledge concerning the influence of certain modifiable and unmodifiable factors, including smoking, alcohol intake, gender, age and genotype variation on PON1 activity, along with pathways through which these could interfere with the enzyme's protective functions, is presented and discussed. Since exposure to certain xenobiotics plays a key role in PON1 activity, the influence of organophosphates, heavy metals and several pharmaceutical agents is also specified.
Collapse
Affiliation(s)
| | | | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50–556 Wrocław, Poland
| |
Collapse
|