1
|
He S, Chen Y, Lian H, Cao X, Liu B, Wei X. Self-Assembled DNA/SG-I Nanoflower: Versatile Photocatalytic Biosensors for Disease-Related Markers. Anal Chem 2025; 97:4350-4358. [PMID: 39973756 DOI: 10.1021/acs.analchem.4c04772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
DNA nanostructures have recently attracted more attention with functionalities, programmability, and biocompatibility. Herein, a novel self-assembled photocatalytic DNA/SYBR Green I (SG-I) nanoflower (DSNF) was successfully synthesized by rolling circle amplification. DSNF was self-assembled through liquid crystallization of a high concentration of DNA in the RCA products, without relying on the Watson-Crick base-pairing principle. Interestingly, DSNF not only possessed a larger specific surface area and good stability but also exhibited excellent photocatalytic activity that generates singlet oxygen and superoxide anion to oxidate 3,3',5,5'-tetramethylbenzidine. Meanwhile, the photocatalytic DSNF combined with an enzyme-linked immunosorbent assay to develop a new colorimetric sensor for highly specific, sensitive, and visual detection of carcinoembryonic antigens (CEAs). The colorimetric sensor achieved sensitive and low-cost quantitative detection of CEA in the linear range of 0.5-80.0 ng/mL, and the LOD was 0.5 ng/mL. In addition, three negative and seven positive clinical serum samples of CEA were obtained with 100% accuracy using the proposed colorimetric sensor, showing great potential in the clinical application of cancer diagnosis. We envision that this photocatalytic DSNF is expected to provide important perspectives in fluorescence imaging, photosensitizing cancer therapy, and clinical diagnosis fields.
Collapse
Affiliation(s)
- Shan He
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China
| | - Yiyu Chen
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Huiting Lian
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Laboratory of Molecular Designing and Green Conversions, Huaqiao University, Xiamen 361021, China
| | - Xuegong Cao
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Laboratory of Molecular Designing and Green Conversions, Huaqiao University, Xiamen 361021, China
| | - Bin Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Laboratory of Molecular Designing and Green Conversions, Huaqiao University, Xiamen 361021, China
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen 361021, China
| | - Xiaofeng Wei
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Laboratory of Molecular Designing and Green Conversions, Huaqiao University, Xiamen 361021, China
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
2
|
Singh N, Sharma A, Goel A, Kumar K, Solanki R, Bhatia D. DNA-based Precision Tools to Probe and Program Mechanobiology and Organ Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410440. [PMID: 39887556 DOI: 10.1002/smll.202410440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/09/2025] [Indexed: 02/01/2025]
Abstract
DNA nanotechnology represents an innovative discipline that combines nanotechnology with biotechnology. It exploits the distinctive characteristics of deoxyribonucleic acid (DNA) to create nanoscale structures and devices with remarkable accuracy and functionality. Researchers may create complex nanostructures with precision and specialized functions using DNA's innate stability, adaptability, and capacity to self-assemble through complementary base-pairing interactions. Integrating multiple disciplines, known as nanobiotechnology, allows the production of sophisticated nanodevices with a broad range of applications. These include precise drug delivery systems, extremely sensitive biosensors, and the construction of intricate tissue scaffolds for regenerative medicine. Moreover, combining DNA nanotechnology with mechanobiology provides a new understanding of how small-scale mechanical stresses and molecular interactions affect cellular activity and tissue development. DNA nanotechnology has the potential to revolutionize molecular diagnostics, tissue engineering, and organ regeneration. This could lead to enormous improvements in biomedicine. This review emphasizes the most recent developments in DNA nanotechnology, explicitly highlighting its significant influence on mechanobiology and its growing involvement in organ engineering. It provides an extensive overview of present trends, obstacles, and future prospects in this fast-progressing area.
Collapse
Affiliation(s)
- Nihal Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Ayushi Sharma
- College of Medicine, Taipei Medical University, Taipei City, 110, Taiwan
| | - Anjana Goel
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, 281406, India
| | - Krishan Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| |
Collapse
|
3
|
Zheng M, Sha R. A mirror-image experiment: Sorting carbon nanotubes by L-DNA. PNAS NEXUS 2025; 4:pgaf013. [PMID: 39867667 PMCID: PMC11759263 DOI: 10.1093/pnasnexus/pgaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
DNA has found increasing applications in molecular engineering, yet its chiral property has rarely been utilized. Here, we report a mirror-image experiment using naturally occurring D-DNA and its enantiomer L-DNA to sort a chiral mixture of single-wall carbon nanotubes (SWCNTs). We find that parity conservation leads to a robust experimental outcome: changing DNA chirality results in handedness inversion of the purified nanotube. This finding provides a straightforward solution to the challenging problem of nanotube enantiomer sorting and a materials foundation for applications in fields such as spintronics and chiral sensing. To illustrate the latter, we show that enantiomeric pairs of DNA-SWCNTs can serve as bilateral chiral gauges for quantifying the degree of molecular chirality.
Collapse
Affiliation(s)
- Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Ruojie Sha
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
4
|
Yadav K, Gnanakani SPE, Sahu KK, Veni Chikkula CK, Vaddi PS, Srilakshmi S, Yadav R, Sucheta, Dubey A, Minz S, Pradhan M. Nano revolution of DNA nanostructures redefining cancer therapeutics-A comprehensive review. Int J Biol Macromol 2024; 274:133244. [PMID: 38901506 DOI: 10.1016/j.ijbiomac.2024.133244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
DNA nanostructures are a promising tool in cancer treatment, offering an innovative way to improve the effectiveness of therapies. These nanostructures can be made solely from DNA or combined with other materials to overcome the limitations of traditional single-drug treatments. There is growing interest in developing nanosystems capable of delivering multiple drugs simultaneously, addressing challenges such as drug resistance. Engineered DNA nanostructures are designed to precisely deliver different drugs to specific locations, enhancing therapeutic effects. By attaching targeting molecules, these nanostructures can recognize and bind to cancer cells, increasing treatment precision. This approach offers tailored solutions for targeted drug delivery, enabling the delivery of multiple drugs in a coordinated manner. This review explores the advancements and applications of DNA nanostructures in cancer treatment, with a focus on targeted drug delivery and multi-drug therapy. It discusses the benefits and current limitations of nanoscale formulations in cancer therapy, categorizing DNA nanostructures into pure forms and hybrid versions optimized for drug delivery. Furthermore, the review examines ongoing research efforts and translational possibilities, along with challenges in clinical integration. By highlighting the advancements in DNA nanostructures, this review aims to underscore their potential in improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai 490024, India
| | - S Princely E Gnanakani
- Department of Pharmaceutical Biotechnology, Parul Institute of Pharmacy, Parul University, Post Limda, Ta.Waghodia - 391760, Dist. Vadodara, Gujarat, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - C Krishna Veni Chikkula
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - Poorna Sai Vaddi
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - S Srilakshmi
- Gitam School of Pharmacy, Department of Pharmaceutical Chemistry, Gitams University, Vishakhapatnam, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, Karnataka, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak (M.P.), India
| | | |
Collapse
|
5
|
Sharma A, Vaswani P, Bhatia D. Revolutionizing cancer therapy using tetrahedral DNA nanostructures as intelligent drug delivery systems. NANOSCALE ADVANCES 2024; 6:3714-3732. [PMID: 39050960 PMCID: PMC11265600 DOI: 10.1039/d4na00145a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
DNA nanostructures have surfaced as intriguing entities with vast potential in biomedicine, notably in the drug delivery area. Tetrahedral DNA nanostructures (TDNs) have received worldwide attention from among an array of different DNA nanostructures due to their extraordinary stability, great biocompatibility, and ease of functionalization. TDNs could be readily synthesized, making them attractive carriers for chemotherapeutic medicines, nucleic acid therapeutics, and imaging probes. Their varied uses encompass medication delivery, molecular diagnostics, biological imaging, and theranostics. This review extensively highlights the mechanisms of functional modification of TDNs and their applications in cancer therapy. Additionally, it discusses critical concerns and unanswered problems that require attention to increase the future application of TDNs in developing cancer treatment.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University Mathura Uttar Pradesh-281406 India
| | - Payal Vaswani
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj 382355 Gandhinagar India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj 382355 Gandhinagar India
| |
Collapse
|
6
|
Safarkhani M, Ahmadi S, Ipakchi H, Saeb MR, Makvandi P, Ebrahimi Warkiani M, Rabiee N, Huh Y. Advancements in Aptamer-Driven DNA Nanostructures for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401617. [PMID: 38713753 PMCID: PMC11234471 DOI: 10.1002/advs.202401617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Indexed: 05/09/2024]
Abstract
DNA nanostructures exhibit versatile geometries and possess sophisticated capabilities not found in other nanomaterials. They serve as customizable nanoplatforms for orchestrating the spatial arrangement of molecular components, such as biomolecules, antibodies, or synthetic nanomaterials. This is achieved by incorporating oligonucleotides into the design of the nanostructure. In the realm of drug delivery to cancer cells, there is a growing interest in active targeting assays to enhance efficacy and selectivity. The active targeting approach involves a "key-lock" mechanism where the carrier, through its ligand, recognizes specific receptors on tumor cells, facilitating the release of drugs. Various DNA nanostructures, including DNA origami, Tetrahedral, nanoflower, cruciform, nanostar, nanocentipede, and nanococklebur, can traverse the lipid layer of the cell membrane, allowing cargo delivery to the nucleus. Aptamers, easily formed in vitro, are recognized for their targeted delivery capabilities due to their high selectivity for specific targets and low immunogenicity. This review provides a comprehensive overview of recent advancements in the formation and modification of aptamer-modified DNA nanostructures within drug delivery systems.
Collapse
Affiliation(s)
- Moein Safarkhani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Sepideh Ahmadi
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Hossein Ipakchi
- Department of Chemical Engineering, McMaster University, Hamilton, L8S 4L8, Canada
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk, 80-416, Poland
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000 Quzhou, Zhejiang, China
- Centre of Research Impact and Outreach, Chitkara University, Rajpura, Punjab, 140417, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia
| | - YunSuk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| |
Collapse
|
7
|
Song Y, Dong QQ, Ni YK, Xu XL, Chen CX, Chen W. Nano-Proteolysis Targeting Chimeras (Nano-PROTACs) in Cancer Therapy. Int J Nanomedicine 2024; 19:5739-5761. [PMID: 38882545 PMCID: PMC11180470 DOI: 10.2147/ijn.s448684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that have the capability to induce specific protein degradation. While playing a revolutionary role in effectively degrading the protein of interest (POI), PROTACs encounter certain limitations that impede their clinical translation. These limitations encompass off-target effects, inadequate cell membrane permeability, and the hook effect. The advent of nanotechnology presents a promising avenue to surmount the challenges associated with conventional PROTACs. The utilization of nano-proteolysis targeting chimeras (nano-PROTACs) holds the potential to enhance specific tissue accumulation, augment membrane permeability, and enable controlled release. Consequently, this approach has the capacity to significantly enhance the controllable degradation of target proteins. Additionally, they enable a synergistic effect by combining with other therapeutic strategies. This review comprehensively summarizes the structural basis, advantages, and limitations of PROTACs. Furthermore, it highlights the latest advancements in nanosystems engineered for delivering PROTACs, as well as the development of nano-sized PROTACs employing nanocarriers as linkers. Moreover, it delves into the underlying principles of nanotechnology tailored specifically for PROTACs, alongside the current prospects of clinical research. In conclusion, the integration of nanotechnology into PROTACs harbors vast potential in enhancing the anti-tumor treatment response and expediting clinical translation.
Collapse
Affiliation(s)
- Yue Song
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, People’s Republic of China
| | - Qing-Qing Dong
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Yi-Ke Ni
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, People’s Republic of China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, People’s Republic of China
| | - Chao-Xiang Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, People’s Republic of China
| | - Wei Chen
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
8
|
Seo HS, Han JH, Lim J, Bae GH, Byun MJ, Wang CPJ, Han J, Park J, Park HH, Shin M, Park TE, Kim TH, Kim SN, Park W, Park CG. Enhanced Postsurgical Cancer Treatment Using Methacrylated Glycol Chitosan Hydrogel for Sustained DNA/Doxorubicin Delivery and Immunotherapy. Biomater Res 2024; 28:0008. [PMID: 38532906 PMCID: PMC10964224 DOI: 10.34133/bmr.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 03/28/2024] Open
Abstract
Background: Cancer recurrence and metastasis are major contributors to treatment failure following tumor resection surgery. We developed a novel implantable drug delivery system utilizing glycol chitosan to address these issues. Glycol chitosan is a natural adjuvant, inducing dendritic cell activation to promote T helper 1 cell immune responses, macrophage activation, and cytokine production. Effective antigen production by dendritic cells initiates T-cell-mediated immune responses, aiding tumor growth control. Methods: In this study, we fabricated multifunctional methacrylated glycol chitosan (MGC) hydrogels with extended release of DNA/doxorubicin (DOX) complex for cancer immunotherapy. We constructed the resection model of breast cancer to verify the anticancer effects of MGC hydrogel with DNA/DOX complex. Results: This study demonstrated the potential of MGC hydrogel with extended release of DNA/DOX complex for local and efficient cancer therapy. The MGC hydrogel was implanted directly into the surgical site after tumor resection, activating tumor-related immune cells both locally and over a prolonged period of time through immune-reactive molecules. Conclusions: The MGC hydrogel effectively suppressed tumor recurrence and metastasis while enhancing immunotherapeutic efficacy and minimizing side effects. This biomaterial-based drug delivery system, combined with cancer immunotherapy, can substantial improve treatment outcomes and patient prognosis.
Collapse
Affiliation(s)
- Hee Seung Seo
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jun-Hyeok Han
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Ga-Hyun Bae
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of MetaBioHealth,
SKKU Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Min Ji Byun
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Chi-Pin James Wang
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jieun Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School Medicine,
University of Hawai'i at Manoa, Honolulu, HI 96813, USA
| | - Hee Ho Park
- Department of Bioengineering,
Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering,
Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering,
Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Se-Na Kim
- Research and Development Center,
MediArk Inc., 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk 28644, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of MetaBioHealth,
SKKU Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Biomaterials Research Center,
Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Biomedical Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| |
Collapse
|
9
|
Zou W, Lu J, Zhang L, Sun D. Tetrahedral framework nucleic acids for improving wound healing. J Nanobiotechnology 2024; 22:113. [PMID: 38491372 PMCID: PMC10943864 DOI: 10.1186/s12951-024-02365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Wounds are one of the most common health issues, and the cost of wound care and healing has continued to increase over the past decade. In recent years, there has been growing interest in developing innovative strategies to enhance the efficacy of wound healing. Tetrahedral framework nucleic acids (tFNAs) have emerged as a promising tool for wound healing applications due to their unique structural and functional properties. Therefore, it is of great significance to summarize the applications of tFNAs for wound healing. This review article provides a comprehensive overview of the potential of tFNAs as a novel therapeutic approach for wound healing. In this review, we discuss the possible mechanisms of tFNAs in wound healing and highlight the role of tFNAs in modulating key processes involved in wound healing, such as cell proliferation and migration, angiogenesis, and tissue regeneration. The targeted delivery and controlled release capabilities of tFNAs offer advantages in terms of localized and sustained delivery of therapeutic agents to the wound site. In addition, the latest research progress on tFNAs in wound healing is systematically introduced. We also discuss the biocompatibility and biosafety of tFNAs, along with their potential applications and future directions for research. Finally, the current challenges and prospects of tFNAs are briefly discussed to promote wider applications.
Collapse
Affiliation(s)
- Wanqing Zou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China.
| | - Luyong Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China.
| |
Collapse
|
10
|
Nasiri M, Bahadorani M, Dellinger K, Aravamudhan S, Vivero-Escoto JL, Zadegan R. Improving DNA nanostructure stability: A review of the biomedical applications and approaches. Int J Biol Macromol 2024; 260:129495. [PMID: 38228209 PMCID: PMC11060068 DOI: 10.1016/j.ijbiomac.2024.129495] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
DNA's programmable, predictable, and precise self-assembly properties enable structural DNA nanotechnology. DNA nanostructures have a wide range of applications in drug delivery, bioimaging, biosensing, and theranostics. However, physiological conditions, including low cationic ions and the presence of nucleases in biological systems, can limit the efficacy of DNA nanostructures. Several strategies for stabilizing DNA nanostructures have been developed, including i) coating them with biomolecules or polymers, ii) chemical cross-linking of the DNA strands, and iii) modifications of the nucleotides and nucleic acids backbone. These methods significantly enhance the structural stability of DNA nanostructures and thus enable in vivo and in vitro applications. This study reviews the present perspective on the distinctive properties of the DNA molecule and explains various DNA nanostructures, their advantages, and their disadvantages. We provide a brief overview of the biomedical applications of DNA nanostructures and comprehensively discuss possible approaches to improve their biostability. Finally, the shortcomings and challenges of the current biostability approaches are examined.
Collapse
Affiliation(s)
- Mahboobeh Nasiri
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Mehrnoosh Bahadorani
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Shyam Aravamudhan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Reza Zadegan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA.
| |
Collapse
|
11
|
Moccia M, Pascucci B, Saviano M, Cerasa MT, Terzidis MA, Chatgilialoglu C, Masi A. Advances in Nucleic Acid Research: Exploring the Potential of Oligonucleotides for Therapeutic Applications and Biological Studies. Int J Mol Sci 2023; 25:146. [PMID: 38203317 PMCID: PMC10778772 DOI: 10.3390/ijms25010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, nucleic acids have emerged as powerful biomaterials, revolutionizing the field of biomedicine. This review explores the multifaceted applications of nucleic acids, focusing on their pivotal role in various biomedical applications. Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), possess unique properties such as molecular recognition ability, programmability, and ease of synthesis, making them versatile tools in biosensing and for gene regulation, drug delivery, and targeted therapy. Their compatibility with chemical modifications enhances their binding affinity and resistance to degradation, elevating their effectiveness in targeted applications. Additionally, nucleic acids have found utility as self-assembling building blocks, leading to the creation of nanostructures whose high order underpins their enhanced biological stability and affects the cellular uptake efficiency. Furthermore, this review delves into the significant role of oligonucleotides (ODNs) as indispensable tools for biological studies and biomarker discovery. ODNs, short sequences of nucleic acids, have been instrumental in unraveling complex biological mechanisms. They serve as probes for studying gene expression, protein interactions, and cellular pathways, providing invaluable insights into fundamental biological processes. By examining the synergistic interplay between nucleic acids as powerful biomaterials and ODNs as indispensable tools for biological studies and biomarkers, this review highlights the transformative impact of these molecules on biomedical research. Their versatile applications not only deepen our understanding of biological systems but also are the driving force for innovation in diagnostics and therapeutics, ultimately advancing the field of biomedicine.
Collapse
Affiliation(s)
- Maria Moccia
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Strada Provinciale 35d, n. 9, 00010 Montelibretti, Italy; (M.M.); (B.P.)
| | - Barbara Pascucci
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Strada Provinciale 35d, n. 9, 00010 Montelibretti, Italy; (M.M.); (B.P.)
| | - Michele Saviano
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, URT Caserta, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Maria Teresa Cerasa
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Giovanni Amendola 122/O, 70126 Bari, Italy;
| | - Michael A. Terzidis
- Laboratory of Chemical Biology, Department of Nutritional Sciences and Dietetics, Sindos Campus, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy;
- Center of Advanced Technologies, Adam Mickiewicz University, 61-712 Poznań, Poland
| | - Annalisa Masi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Strada Provinciale 35d, n. 9, 00010 Montelibretti, Italy; (M.M.); (B.P.)
| |
Collapse
|
12
|
Xu X, Xu S, Wan J, Wang D, Pang X, Gao Y, Ni N, Chen D, Sun X. Disturbing cytoskeleton by engineered nanomaterials for enhanced cancer therapeutics. Bioact Mater 2023; 29:50-71. [PMID: 37621771 PMCID: PMC10444958 DOI: 10.1016/j.bioactmat.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/26/2023] Open
Abstract
Cytoskeleton plays a significant role in the shape change, migration, movement, adhesion, cytokinesis, and phagocytosis of tumor cells. In clinical practice, some anti-cancer drugs achieve cytoskeletal therapeutic effects by acting on different cytoskeletal protein components. However, in the absence of cell-specific targeting, unnecessary cytoskeletal recombination in organisms would be disastrous, which would also bring about severe side effects during anticancer process. Nanomedicine have been proven to be superior to some small molecule drugs in cancer treatment due to better stability and targeting, and lower side effects. Therefore, this review summarized the recent developments of various nanomaterials disturbing cytoskeleton for enhanced cancer therapeutics, including carbon, noble metals, metal oxides, black phosphorus, calcium, silicon, polymers, peptides, and metal-organic frameworks, etc. A comprehensive analysis of the characteristics of cytoskeleton therapy as well as the future prospects and challenges towards clinical application were also discussed. We aim to drive on this emerging topic through refreshing perspectives based on our own work and what we have also learnt from others. This review will help researchers quickly understand relevant cytoskeletal therapeutic information to further advance the development of cancer nanomedicine.
Collapse
Affiliation(s)
- Xueli Xu
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Shanbin Xu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jipeng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Diqing Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinlong Pang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yuan Gao
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Dawei Chen
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiao Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
13
|
Lee H, Noh H. Advancements in Nanogels for Enhanced Ocular Drug Delivery: Cutting-Edge Strategies to Overcome Eye Barriers. Gels 2023; 9:718. [PMID: 37754399 PMCID: PMC10529109 DOI: 10.3390/gels9090718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
Nanomedicine in gel or particle formation holds considerable potential for enhancing passive and active targeting within ocular drug delivery systems. The complex barriers of the eye, exemplified by the intricate network of closely connected tissue structures, pose significant challenges for drug administration. Leveraging the capability of engineered nanomedicine offers a promising approach to enhance drug penetration, particularly through active targeting agents such as protein peptides and aptamers, which facilitate targeted release and heightened bioavailability. Simultaneously, DNA carriers have emerged as a cutting-edge class of active-targeting structures, connecting active targeting agents and illustrating their potential in ocular drug delivery applications. This review aims to consolidate recent findings regarding the optimization of various nanoparticles, i.e., hydrogel-based systems, incorporating both passive and active targeting agents for ocular drug delivery, thereby identifying novel mechanisms and strategies. Furthermore, the review delves into the potential application of DNA nanostructures, exploring their role in the development of targeted drug delivery approaches within the field of ocular therapy.
Collapse
Affiliation(s)
| | - Hyeran Noh
- Department of Optometry, Seoul National University of Science and Technology, Gongnung-ro 232, Nowon-gu, Seoul 01811, Republic of Korea;
| |
Collapse
|
14
|
Meng L, Liao X, Wang Y, Chen L, Gao W, Wang M, Dai H, Yan N, Gao Y, Wu X, Wang K, Liu Q. Pharmacologic therapies of ARDS: From natural herb to nanomedicine. Front Pharmacol 2022; 13:930593. [PMID: 36386221 PMCID: PMC9651133 DOI: 10.3389/fphar.2022.930593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common critical illness in respiratory care units with a huge public health burden. Despite tremendous advances in the prevention and treatment of ARDS, it remains the main cause of intensive care unit (ICU) management, and the mortality rate of ARDS remains unacceptably high. The poor performance of ARDS is closely related to its heterogeneous clinical syndrome caused by complicated pathophysiology. Based on the different pathophysiology phases, drugs, protective mechanical ventilation, conservative fluid therapy, and other treatment have been developed to serve as the ARDS therapeutic methods. In recent years, there has been a rapid development in nanomedicine, in which nanoparticles as drug delivery vehicles have been extensively studied in the treatment of ARDS. This study provides an overview of pharmacologic therapies for ARDS, including conventional drugs, natural medicine therapy, and nanomedicine. Particularly, we discuss the unique mechanism and strength of nanomedicine which may provide great promises in treating ARDS in the future.
Collapse
Affiliation(s)
- Linlin Meng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Ximing Liao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Yuanyuan Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Liangzhi Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Gao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Muyun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Huiling Dai
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Na Yan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yixuan Gao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| | - Qinghua Liu
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| |
Collapse
|
15
|
Hou S, Hasnat M, Chen Z, Liu Y, Faran Ashraf Baig MM, Liu F, Chen Z. Application Perspectives of Nanomedicine in Cancer Treatment. Front Pharmacol 2022; 13:909526. [PMID: 35860027 PMCID: PMC9291274 DOI: 10.3389/fphar.2022.909526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is a disease that seriously threatens human health. Based on the improvement of traditional treatment methods and the development of new treatment modes, the pattern of cancer treatment is constantly being optimized. Nanomedicine plays an important role in these evolving tumor treatment modalities. In this article, we outline the applications of nanomedicine in three important tumor-related fields: chemotherapy, gene therapy, and immunotherapy. According to the current common problems, such as poor targeting of first-line chemotherapy drugs, easy destruction of nucleic acid drugs, and common immune-related adverse events in immunotherapy, we discuss how nanomedicine can be combined with these treatment modalities, provide typical examples, and summarize the advantages brought by the application of nanomedicine.
Collapse
Affiliation(s)
- Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ziwei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Yinong Liu
- Hospital Laboratory of Nangjing Lishui People’s Hospital, Nangjing, China
| | - Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical Engineering for Novel Bio-functional, and Pharmaceutical Nanomaterials, Prince Philip Dental Hospital, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fuhe Liu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
- *Correspondence: Zelong Chen, ; Fuhe Liu,
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Province Engineering Research Center of Artificial Intelligence and Internet of Things Wise Medical, Zhengzhou, China
- *Correspondence: Zelong Chen, ; Fuhe Liu,
| |
Collapse
|