1
|
Leopizzi M, Mundo L, Messina E, Campolo F, Lazzi S, Angeloni A, Marchese C, Leoncini L, Giordano C, Slack F, Trivedi P, Anastasiadou E. Epstein-Barr virus-encoded EBNA2 downregulates ICOSL by inducing miR-24 in B-cell lymphoma. Blood 2024; 143:429-443. [PMID: 37847858 PMCID: PMC10862363 DOI: 10.1182/blood.2023021346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
ABSTRACT Hematological malignancies such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and diffuse large B-cell lymphoma (DLBCL) cause significant morbidity in humans. A substantial number of these lymphomas, particularly HL and DLBCLs have poorer prognosis because of their association with Epstein-Barr virus (EBV). Our earlier studies have shown that EBV-encoded nuclear antigen (EBNA2) upregulates programmed cell death ligand 1 in DLBCL and BLs by downregulating microRNA-34a. Here, we investigated whether EBNA2 affects the inducible costimulator (ICOS) ligand (ICOSL), a molecule required for efficient recognition of tumor cells by T cells through the engagement of ICOS on the latter. In virus-infected and EBNA2-transfected B-lymphoma cells, ICOSL expression was reduced. Our investigation of the molecular mechanisms revealed that this was due to an increase in microRNA-24 (miR-24) by EBNA2. By using ICOSL 3' untranslated region-luciferase reporter system, we validated that ICOSL is an authentic miR-24 target. Transfection of anti-miR-24 molecules in EBNA2-expressing lymphoma cells reconstituted ICOSL expression and increased tumor immunogenicity in mixed lymphocyte reactions. Because miR-24 is known to target c-MYC, an oncoprotein positively regulated by EBNA2, we analyzed its expression in anti-miR-24 transfected lymphoma cells. Indeed, the reduction of miR-24 in EBNA2-expressing DLBCL further elevated c-MYC and increased apoptosis. Consistent with the in vitro data, EBNA2-positive DLBCL biopsies expressed low ICOSL and high miR-24. We suggest that EBV evades host immune responses through EBNA2 by inducing miR-24 to reduce ICOSL expression, and for simultaneous rheostatic maintenance of proproliferative c-MYC levels. Overall, these data identify miR-24 as a potential therapeutically relevant target in EBV-associated lymphomas.
Collapse
Affiliation(s)
- Martina Leopizzi
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Lucia Mundo
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Carla Giordano
- Department of Radiology, Oncology and Pathology, Sapienza University, Rome, Italy
| | - Frank Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
2
|
Münz C. Immune checkpoints in T cells during oncogenic γ-herpesvirus infections. J Med Virol 2023; 95:e27840. [PMID: 35524342 PMCID: PMC9790391 DOI: 10.1002/jmv.27840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are two persistent oncogenic γ-herpesviruses with an exclusive tropism for humans. They cause cancers of lymphocyte, epithelial and endothelial cell origin, such as Burkitt's and Hodgkin's lymphoma, primary effusion lymphoma, nasopharyngeal carcinoma, and Kaposi sarcoma. Mutations in immune-related genes but also adverse events during immune checkpoint inhibition in cancer patients have revealed molecular requirements for immune control of EBV and KSHV. These include costimulatory and coinhibitory receptors on T cells that are currently explored or already therapeutically targeted in tumor patients. This review discusses these co-receptors and their influence on EBV- and KSHV-associated diseases. The respective studies reveal surprising specificities of some of these receptors for immunity to these tumor viruses, benefits of their blockade for some but not other virus-associated diseases, and that EBV- and KSHV-specific immune control should be monitored during immune checkpoint inhibition to prevent adverse events that might be associated with their reactivation during treatment.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology Department, Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
3
|
Zhang Y, Huang C, Zhang H, Duan Z, Liu Q, Li J, Zong Q, Wei Y, Liu F, Duan W, Chen L, Zhou Q, Wang Q. Characteristics of immunological events in Epstein-Barr virus infection in children with infectious mononucleosis. Front Pediatr 2023; 11:1060053. [PMID: 36846163 PMCID: PMC9949895 DOI: 10.3389/fped.2023.1060053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUNDS & AIMS Epstein-Barr virus (EBV) infection occurs commonly in children and may cause acute infectious mononucleosis (AIM) and various malignant diseases. Host immune responses are key players in the resistance to EBV infection. We here assessed the immunological events and laboratory indicators of EBV infection, as well as determined the clinical usefulness of evaluating the severity and efficacy of antiviral therapy in AIM patients. METHODS We enrolled 88 children with EBV infection. The immune environment was defined by immunological events such as frequencies of lymphocyte subsets, phenotypes of T cells, and their ability to secrete cytokines, and so on. This environment was analyzed in EBV-infected children with different viral loads and in children in different phases of infectious mononucleosis (IM) from disease onset to convalescence. RESULTS Children with AIM had higher frequencies of CD3+ T and CD8+ T cells, but lower frequencies of CD4+ T cells and CD19+ B cells. In these children, the expression of CD62L was lower and that of CTLA-4 and PD-1 was higher on T cells. EBV exposure induced granzyme B expression, but reduced IFN-γ secretion, by CD8+ T cells, whereas NK cells exhibited reduced granzyme B expression and increased IFN-γ secretion. The frequency of CD8+ T cells was positively correlated with the EBV DNA load, whereas the frequencies of CD4+ T cells and B cells were negatively correlated. During the convalescent phase of IM, CD8+ T cell frequency and CD62L expression on T cells were restored. Moreover, patient serum levels of IL-4, IL-6, IL-10, and IFN-γ were considerably lower throughout the convalescent phase than throughout the acute phase. CONCLUSION Robust expansion of CD8+ T cells, accompanied by CD62L downregulation, PD-1 and CTLA-4 upregulation on T cells, enhanced granzyme B production, and impaired IFN-γ secretion, is a typical characteristic of immunological events in children with AIM. Noncytolytic and cytolytic effector functions of CD8+ T cells are regulated in an oscillatory manner. Furthermore, the AST level, number of CD8+ T cells, and CD62L expression on T cells may act as markers related to IM severity and the effectiveness of antiviral treatment.
Collapse
Affiliation(s)
- Yunyun Zhang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chengrong Huang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China.,Department of Clinical Laboratory, Anqing Municipal Hospital, Anqing, China
| | - Hao Zhang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhi Duan
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qian Liu
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jianfei Li
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qiyin Zong
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yu Wei
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Futing Liu
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Wanlu Duan
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Liwen Chen
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qin Wang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Epstein-Barr virus-associated posttransplant lymphoproliferative disorders: new insights in pathogenesis, classification and treatment. Curr Opin Oncol 2022; 34:413-421. [PMID: 35900750 DOI: 10.1097/cco.0000000000000885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Posttransplant lymphoproliferative disorder (PTLD) is a serious complication following transplantation from an allogeneic donor. Epstein-Barr Virus (EBV) is involved in a substantial number of cases. In this review, we aim to summarize recent knowledge on pathogenesis, classification and treatment of EBV + PTLD. RECENT FINDINGS New insights in the complex oncogenic properties of EBV antigens noncoding Ribonucleic acids (RNAs), especially EBV MicroRNA (miRNAs), have increased our knowledge of the pathogenesis of EBV + PTLD. In addition the potential influence of EBV on the tumor microenvironment is becoming clearer, paving the way for new types of immunotherapy. Currently PTLD is classified according to the World Health Organization classification together with other lymphoproliferative disorders, based on the specific immunosuppression. However, a new framework integrating all types of lymphoproliferative disorders in all different settings of immune deficiency and dysregulation is needed. Although treatment of EBV + and EBV - PTLD was largely similar in the past, EBV-directed therapies are currently increasingly used. SUMMARY The use of EBV-directed therapies and new agents, based on better understanding of pathogenesis and classification of PTLD, will change the treatment landscape of EBV + PTLD in the next era.
Collapse
|
5
|
Deng W, Xu Y, Yuan X. Clinical features and prognosis of acute lymphoblastic leukemia in children with Epstein-Barr virus infection. Transl Pediatr 2022; 11:642-650. [PMID: 35685069 PMCID: PMC9173871 DOI: 10.21037/tp-22-146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/07/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is one of the most common malignant diseases of the hematopoietic system in children. Although the etiology of ALL is unknown, it has been reported that it may be associated with Epstein-Barr virus (EBV) infection. The aim of this study was to analyze the impact of EBV infection on the clinical features and prognosis of childhood ALL. METHODS A total of 162 children with ALL admitted to Heilongjiang Provincial Hospital from January 2018 to December 2020 were selected for this stud, and were divided into 2 groups, infected group and non-infected group, according to whether they had EBV infection. Differences in clinical characteristics between the 2 groups were analyzed by χ2 or t-test. The impact of EBV infection on the prognosis of children was analyzed by Kaplan-Meier survival and Cox regression analysis. RESULTS The 2 groups were statistically significantly different (P<0.05) according to comparison of characteristics such as first symptoms, karyotype, immunophenotyping, clinical risk, whether secondary infection occurred during chemotherapy, and lymphocyte subsets. Logistic regression results suggested that first symptoms, karyotype, immunophenotyping, clinical risk, the presence of secondary infection during chemotherapy, and lymphocyte subsets were independently associated with EBV infection in children with ALL (P<0.05). The complete remission rate at 46 days after chemotherapy, event-free survival (EFS), overall survival (OS), and survival rate were lower in the infected group than non-infected group, and the complete remission recurrence rate was higher than non-infected group (P<0.05). The EBV DNA levels were statistically lower in the good prognosis group (1.07±0.25×103 copies/L) than poor prognosis group (8.86±1.14 ×103 copies/L) (P<0.01). The area under the curve (AUC) for EBV to predict prognosis in children with ALL was 0.921, sensitivity and sensitivity were 86.57%, 80.16%. CONCLUSIONS Infection with EBV is associated with first symptoms, karyotype, immunophenotyping, clinical risk, secondary infection during chemotherapy, and lymphocyte subpopulation index levels in children with ALL, and children with EBV infection have a reduced clinical remission rate and poor prognosis. Therefore, the detection of EBV DNA is clinically important for assessing the prognosis of their disease.
Collapse
Affiliation(s)
- Wei Deng
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Yating Xu
- Department of Pediatrics, Huai'an Hospital of Huai'an City, Huai'an, China
| | - Xunling Yuan
- Department of Pediatrics, Heilongjiang Provincial Hospital, Harbin, China
| |
Collapse
|
6
|
Biggi AFB, Elgui de Oliveira D. The Epstein-Barr Virus Hacks Immune Checkpoints: Evidence and Consequences for Lymphoproliferative Disorders and Cancers. Biomolecules 2022; 12:397. [PMID: 35327589 PMCID: PMC8946074 DOI: 10.3390/biom12030397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
The Epstein-Barr Virus (EBV) is a gammaherpesvirus involved in the etiopathogenesis of a variety of human cancers, mostly of lymphoid and epithelial origin. The EBV infection participates in both cell transformation and tumor progression, also playing an important role in subverting immune responses against cancers. The homeostasis of the immune system is tightly regulated by inhibitory mechanisms affecting key immune effectors, such as T lymphocytes and NK cells. Collectively known as immune checkpoints, these mechanisms rely on a set of cellular receptors and ligands. These molecules may be candidate targets for immune checkpoints blockade-an emergent and promising modality of immunotherapy already proven to be valuable for a variety of human cancers. The EBV was lately suspected to interfere with the expression of immune checkpoint molecules, notably PD-1 and its ligands, found to be overexpressed in cases of Hodgkin lymphoma, nasopharyngeal, and gastric adenocarcinomas associated with the viral infection. Even though there is compelling evidence showing that the EBV interferes with other immune checkpoint regulators (e.g., CTLA-4, LAG-3, TIM-3, and VISTA), the published data are still scarce. Herein, we discuss the current state of the knowledge on how the EBV interferes with the activity of immune checkpoints regulators, as well as its implications considering the immune checkpoints blockade for clinical management of the EBV-associated malignancies, notably lymphomas.
Collapse
Affiliation(s)
| | - Deilson Elgui de Oliveira
- Department of Pathology, Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- ViriCan, Institute for Biotechnology (IBTEC), São Paulo State University (UNESP), Botucatu 18607-440, SP, Brazil
| |
Collapse
|