1
|
Shukla N, Neal ML, Farré JC, Mast FD, Truong L, Simon T, Miller LR, Aitchison JD, Subramani S. TOR and heat shock response pathways regulate peroxisome biogenesis during proteotoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630809. [PMID: 40093121 PMCID: PMC11908190 DOI: 10.1101/2024.12.31.630809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Peroxisomes are versatile organelles mediating energy homeostasis and redox balance. While peroxisome dysfunction is linked to numerous diseases, the molecular mechanisms and signaling pathways regulating peroxisomes during cellular stress remain elusive. Using yeast, we show that perturbations disrupting protein homeostasis including loss of ER or cytosolic chaperone function, impairments in ER protein translocation, blocking ER N-glycosylation, or reductive stress, cause peroxisome proliferation. This proliferation is driven by increased de novo biogenesis from the ER as well as increased fission of pre-existing peroxisomes, rather than impaired pexophagy. Notably, peroxisome biogenesis is essential for cellular recovery from proteotoxic stress. Through comprehensive testing of major signaling pathways, we determine this response to be mediated by activation of the heat shock response and inhibition of Target of Rapamycin (TOR) signaling. Finally, the effects of proteotoxic stress and TOR inhibition on peroxisomes are also captured in human fibroblasts. Overall, our findings reveal a critical and conserved role of peroxisomes in cellular response to proteotoxic stress.
Collapse
Affiliation(s)
- Nandini Shukla
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maxwell L Neal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jean-Claude Farré
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Linh Truong
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Theresa Simon
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Leslie R Miller
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Suresh Subramani
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Kuwayama N, Powers EN, Siketanc M, Sousa CI, Reynaud K, Jovanovic M, Hondele M, Ingolia NT, Brar GA. Analyses of translation factors Dbp1 and Ded1 reveal the cellular response to heat stress to be separable from stress granule formation. Cell Rep 2024; 43:115059. [PMID: 39675003 PMCID: PMC11759133 DOI: 10.1016/j.celrep.2024.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/05/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Ded1 and Dbp1 are paralogous conserved DEAD-box ATPases involved in translation initiation in yeast. In long-term starvation states, Dbp1 expression increases and Ded1 decreases, whereas in cycling mitotic cells, Dbp1 is absent. Inserting DBP1 in place of DED1 cannot replace Ded1 function in supporting mitotic translation, partly due to inefficient translation of the DBP1 coding region. Global translation measurements, activity of mRNA-tethered proteins, and growth assays show that-even at matched protein levels-Ded1 is better than Dbp1 at activating translation, especially for mRNAs with structured 5' leaders. Heat-stressed cells normally downregulate translation of structured housekeeping transcripts and halt growth, but neither occurs in Dbp1-expressing cells. This failure to halt growth in response to heat is not based on deficient stress granule formation or failure to reduce bulk translation. Rather, it depends on heat-triggered loss of Ded1 function mediated by an 11-amino-acid interval within its intrinsically disordered C terminus.
Collapse
Affiliation(s)
- Naohiro Kuwayama
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emily Nicole Powers
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matej Siketanc
- Biozentrum, Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Camila Ines Sousa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kendra Reynaud
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Maria Hondele
- Biozentrum, Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Nicholas Thomas Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Williams TD, Rousseau A. Translation regulation in response to stress. FEBS J 2024; 291:5102-5122. [PMID: 38308808 PMCID: PMC11616006 DOI: 10.1111/febs.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Cell stresses occur in a wide variety of settings: in disease, during industrial processes, and as part of normal day-to-day rhythms. Adaptation to these stresses requires cells to alter their proteome. Cells modify the proteins they synthesize to aid proteome adaptation. Changes in both mRNA transcription and translation contribute to altered protein synthesis. Here, we discuss the changes in translational mechanisms that occur following the onset of stress, and the impact these have on stress adaptation.
Collapse
Affiliation(s)
- Thomas D. Williams
- MRC‐PPU, School of Life SciencesUniversity of DundeeUK
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | | |
Collapse
|
4
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
5
|
Ferdoush J, Kadir RA, Ogle M, Saha A. Regulation of eukaryotic transcription initiation in response to cellular stress. Gene 2024; 924:148616. [PMID: 38795856 DOI: 10.1016/j.gene.2024.148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-β, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Matthew Ogle
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
6
|
Murdoch E, Schweizer LM, Schweizer M. Hypothesis: evidence that the PRS gene products of Saccharomyces cerevisiae support both PRPP synthesis and maintenance of cell wall integrity. Curr Genet 2024; 70:6. [PMID: 38733432 PMCID: PMC11088543 DOI: 10.1007/s00294-024-01290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/26/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
The gene products of PRS1-PRS5 in Saccharomyces cerevisiae are responsible for the production of PRPP (5-phospho-D-ribosyl-α-1-pyrophosphate). However, it has been demonstrated that they are also involved in the cell wall integrity (CWI) signalling pathway as shown by protein-protein interactions (PPIs) with, for example Slt2, the MAP kinase of the CWI pathway. The following databases: SGD, BioGRID and Hit Predict, which collate PPIs from various research papers, have been scrutinized for evidence of PPIs between Prs1-Prs5 and components of the CWI pathway. The level of certainty in PPIs was verified by interaction scores available in the Hit Predict database revealing that well-documented interactions correspond with higher interaction scores and can be graded as high confidence interactions based on a score > 0.28, an annotation score ≥ 0.5 and a method-based high confidence score level of ≥ 0.485. Each of the Prs1-Prs5 polypeptides shows some degree of interaction with the CWI pathway. However, Prs5 has a vital role in the expression of FKS2 and Rlm1, previously only documented by reporter assay studies. This report emphasizes the importance of investigating interactions using more than one approach since every method has its limitations and the use of different methods, as described herein, provides complementary experimental and statistical data, thereby corroborating PPIs. Since the experimental data described so far are consistent with a link between PRPP synthetase and the CWI pathway, our aim was to demonstrate that these data are also supported by high-throughput bioinformatic analyses promoting our hypothesis that two of the five PRS-encoding genes contain information required for the maintenance of CWI by combining data from our targeted approach with relevant, unbiased data from high-throughput analyses.
Collapse
Affiliation(s)
- Emily Murdoch
- School of Energy, Geoscience, Infrastructure and Society, Institute of Life and Earth Sciences, Energy, Geoscience, Infrastructure and Society, Riccarton Campus, Edinburgh, EH14 4AS, UK
| | | | - Michael Schweizer
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Riccarton Campus, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
7
|
Jacobus AP, Cavassana SD, de Oliveira II, Barreto JA, Rohwedder E, Frazzon J, Basso TP, Basso LC, Gross J. Optimal trade-off between boosted tolerance and growth fitness during adaptive evolution of yeast to ethanol shocks. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:63. [PMID: 38730312 PMCID: PMC11088041 DOI: 10.1186/s13068-024-02503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND The selection of Saccharomyces cerevisiae strains with higher alcohol tolerance can potentially increase the industrial production of ethanol fuel. However, the design of selection protocols to obtain bioethanol yeasts with higher alcohol tolerance poses the challenge of improving industrial strains that are already robust to high ethanol levels. Furthermore, yeasts subjected to mutagenesis and selection, or laboratory evolution, often present adaptation trade-offs wherein higher stress tolerance is attained at the expense of growth and fermentation performance. Although these undesirable side effects are often associated with acute selection regimes, the utility of using harsh ethanol treatments to obtain robust ethanologenic yeasts still has not been fully investigated. RESULTS We conducted an adaptive laboratory evolution by challenging four populations (P1-P4) of the Brazilian bioethanol yeast, Saccharomyces cerevisiae PE-2_H4, through 68-82 cycles of 2-h ethanol shocks (19-30% v/v) and outgrowths. Colonies isolated from the final evolved populations (P1c-P4c) were subjected to whole-genome sequencing, revealing mutations in genes enriched for the cAMP/PKA and trehalose degradation pathways. Fitness analyses of the isolated clones P1c-P3c and reverse-engineered strains demonstrated that mutations were primarily selected for cell viability under ethanol stress, at the cost of decreased growth rates in cultures with or without ethanol. Under this selection regime for stress survival, the population P4 evolved a protective snowflake phenotype resulting from BUD3 disruption. Despite marked adaptation trade-offs, the combination of reverse-engineered mutations cyr1A1474T/usv1Δ conferred 5.46% higher fitness than the parental PE-2_H4 for propagation in 8% (v/v) ethanol, with only a 1.07% fitness cost in a culture medium without alcohol. The cyr1A1474T/usv1Δ strain and evolved P1c displayed robust fermentations of sugarcane molasses using cell recycling and sulfuric acid treatments, mimicking Brazilian bioethanol production. CONCLUSIONS Our study combined genomic, mutational, and fitness analyses to understand the genetic underpinnings of yeast evolution to ethanol shocks. Although fitness analyses revealed that most evolved mutations impose a cost for cell propagation, combination of key mutations cyr1A1474T/usv1Δ endowed yeasts with higher tolerance for growth in the presence of ethanol. Moreover, alleles selected for acute stress survival comprising the P1c genotype conferred stress tolerance and optimal performance under conditions simulating the Brazilian industrial ethanol production.
Collapse
Affiliation(s)
- Ana Paula Jacobus
- Bioenergy Research Institute, São Paulo State University, Rio Claro, Brazil
- SENAI Innovation Institute for Biotechnology, São Paulo, Brazil
| | | | | | | | - Ewerton Rohwedder
- Biological Science Department, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Jeverson Frazzon
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thalita Peixoto Basso
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Luiz Carlos Basso
- Biological Science Department, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Jeferson Gross
- Bioenergy Research Institute, São Paulo State University, Rio Claro, Brazil.
| |
Collapse
|
8
|
Powers EN, Kuwayama N, Sousa C, Reynaud K, Jovanovic M, Ingolia NT, Brar GA. Dbp1 is a low performance paralog of RNA helicase Ded1 that drives impaired translation and heat stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575095. [PMID: 38260653 PMCID: PMC10802583 DOI: 10.1101/2024.01.12.575095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Ded1 and Dbp1 are paralogous conserved RNA helicases that enable translation initiation in yeast. Ded1 has been heavily studied but the role of Dbp1 is poorly understood. We find that the expression of these two helicases is controlled in an inverse and condition-specific manner. In meiosis and other long-term starvation states, Dbp1 expression is upregulated and Ded1 is downregulated, whereas in mitotic cells, Dbp1 expression is extremely low. Inserting the DBP1 ORF in place of the DED1 ORF cannot replace the function of Ded1 in supporting translation, partly due to inefficient mitotic translation of the DBP1 mRNA, dependent on features of its ORF sequence but independent of codon optimality. Global measurements of translation rates and 5' leader translation, activity of mRNA-tethered helicases, ribosome association, and low temperature growth assays show that-even at matched protein levels-Ded1 is more effective than Dbp1 at activating translation, especially for mRNAs with structured 5' leaders. Ded1 supports halting of translation and cell growth in response to heat stress, but Dbp1 lacks this function, as well. These functional differences in the ability to efficiently mediate translation activation and braking can be ascribed to the divergent, disordered N- and C-terminal regions of these two helicases. Altogether, our data show that Dbp1 is a "low performance" version of Ded1 that cells employ in place of Ded1 under long-term conditions of nutrient deficiency.
Collapse
|
9
|
Schwarz LV, Sandri FK, Scariot F, Delamare APL, Valera MJ, Carrau F, Echeverrigaray S. High nitrogen concentration causes G2/M arrest in Hanseniaspora vineae. Yeast 2023; 40:640-650. [PMID: 37997429 DOI: 10.1002/yea.3911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Yeasts have been widely used as a model to better understand cell cycle mechanisms and how nutritional and genetic factors can impact cell cycle progression. While nitrogen scarcity is well known to modulate cell cycle progression, the relevance of nitrogen excess for microorganisms has been overlooked. In our previous work, we observed an absence of proper entry into the quiescent state in Hanseniaspora vineae and identified a potential link between this behavior and nitrogen availability. Furthermore, the Hanseniaspora genus has gained attention due to a significant loss of genes associated with DNA repair and cell cycle. Thus, the aim of our study was to investigate the effects of varying nitrogen concentrations on H. vineae's cell cycle progression. Our findings demonstrated that nitrogen excess, regardless of the source, disrupts cell cycle progression and induces G2/M arrest in H. vineae after reaching the stationary phase. Additionally, we observed a viability decline in H. vineae cells in an ammonium-dependent manner, accompanied by increased production of reactive oxygen species, mitochondrial hyperpolarization, intracellular acidification, and DNA fragmentation. Overall, our study highlights the events of the cell cycle arrest in H. vineae induced by nitrogen excess and attempts to elucidate the possible mechanism triggering this absence of proper entry into the quiescent state.
Collapse
Affiliation(s)
- Luisa Vivian Schwarz
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fernanda Knaach Sandri
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fernando Scariot
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | | | - Maria Jose Valera
- Enology and Fermentation Biotechnology Area, Departamento Ciencia y Tecnología Alimentos, Facultad de Química, Universidad de la Republica, Montevideo, Uruguay
| | - Francisco Carrau
- Enology and Fermentation Biotechnology Area, Departamento Ciencia y Tecnología Alimentos, Facultad de Química, Universidad de la Republica, Montevideo, Uruguay
| | - Sergio Echeverrigaray
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Kim YH, Ryu JI, Devare MN, Jung J, Kim JY. The intricate role of Sir2 in oxidative stress response during the post-diauxic phase in Saccharomyces cerevisiae. Front Microbiol 2023; 14:1285559. [PMID: 38029141 PMCID: PMC10666771 DOI: 10.3389/fmicb.2023.1285559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Silent information regulator 2 (Sir2) is a conserved NAD+-dependent histone deacetylase crucial for regulating cellular stress response and the aging process in Saccharomyces cerevisiae. In this study, we investigated the molecular mechanism underlying how the absence of Sir2 can lead to altered stress susceptibilities in S. cerevisiae under different environmental and physiological conditions. In a glucose-complex medium, the sir2Δ strain showed increased sensitivity to H2O2 compared to the wild-type strain during the post-diauxic phase. In contrast, it displayed increased resistance during the exponential growth phase. Transcriptome analysis of yeast cells in the post-diauxic phase indicated that the sir2Δ mutant expressed several oxidative defense genes at lower levels than the wild-type, potentially accounting for its increased susceptibility to H2O2. Interestingly, however, the sir2Δras2Δ double mutant exhibited greater resistance to H2O2 than the ras2Δ single mutant counterpart. We found that the expression regulation of the cytoplasmic catalase encoded by CTT1 was critical for the increased resistance to H2O2 in the sir2Δras2Δ strain. The expression of the CTT1 gene was influenced by the combined effect of RAS2 deletion and the transcription factor Azf1, whose level was modulated by Sir2. These findings provide insights into the importance of understanding the intricate interactions among various factors contributing to cellular stress response.
Collapse
Affiliation(s)
| | | | | | | | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Francavilla C. Surviving under stress conditions. Nat Struct Mol Biol 2023; 30:1609-1611. [PMID: 37845411 DOI: 10.1038/s41594-023-01116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Affiliation(s)
- Chiara Francavilla
- Division of Cellular and Molecular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.
- Manchester Breast Centre, University of Manchester, Manchester, UK.
- DTU Bioengineering, Danish Technical University, Lyndby, Denmark.
| |
Collapse
|
12
|
Liang J, Tang H, Snyder LF, Youngstrom CE, He BZ. Divergence of TORC1-mediated stress response leads to novel acquired stress resistance in a pathogenic yeast. PLoS Pathog 2023; 19:e1011748. [PMID: 37871123 PMCID: PMC10621968 DOI: 10.1371/journal.ppat.1011748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/02/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.
Collapse
Affiliation(s)
- Jinye Liang
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Hanxi Tang
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Lindsey F. Snyder
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
| | | | - Bin Z. He
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
13
|
Liang J, Tang H, Snyder LF, Youngstrom CE, He BZ. Divergence of TORC1-mediated Stress Response Leads to Novel Acquired Stress Resistance in a Pathogenic Yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545716. [PMID: 37781605 PMCID: PMC10541095 DOI: 10.1101/2023.06.20.545716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Acquired stress resistance (ASR) enables organisms to prepare for environmental changes that occur after an initial stressor. However, the genetic basis for ASR and how the underlying network evolved remain poorly understood. In this study, we discovered that a short phosphate starvation induces oxidative stress response (OSR) genes in the pathogenic yeast C. glabrata and protects it against a severe H2O2 stress; the same treatment, however, provides little benefit in the low pathogenic-potential relative, S. cerevisiae. This ASR involves the same transcription factors (TFs) as the OSR, but with different combinatorial logics. We show that Target-of-Rapamycin Complex 1 (TORC1) is differentially inhibited by phosphate starvation in the two species and contributes to the ASR via its proximal effector, Sch9. Therefore, evolution of the phosphate starvation-induced ASR involves the rewiring of TORC1's response to phosphate limitation and the repurposing of TF-target gene networks for the OSR using new regulatory logics.
Collapse
Affiliation(s)
- Jinye Liang
- Biology Department, The University of Iowa, Iowa City, IA 52242
| | - Hanxi Tang
- Biology Department, The University of Iowa, Iowa City, IA 52242
| | - Lindsey F. Snyder
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242
| | | | - Bin Z. He
- Biology Department, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
14
|
Weith M, Großbach J, Clement‐Ziza M, Gillet L, Rodríguez‐López M, Marguerat S, Workman CT, Picotti P, Bähler J, Aebersold R, Beyer A. Genetic effects on molecular network states explain complex traits. Mol Syst Biol 2023; 19:e11493. [PMID: 37485750 PMCID: PMC10407735 DOI: 10.15252/msb.202211493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023] Open
Abstract
The complexity of many cellular and organismal traits results from the integration of genetic and environmental factors via molecular networks. Network structure and effect propagation are best understood at the level of functional modules, but so far, no concept has been established to include the global network state. Here, we show when and how genetic perturbations lead to molecular changes that are confined to small parts of a network versus when they lead to modulation of network states. Integrating multi-omics profiling of genetically heterogeneous budding and fission yeast strains with an array of cellular traits identified a central state transition of the yeast molecular network that is related to PKA and TOR (PT) signaling. Genetic variants affecting this PT state globally shifted the molecular network along a single-dimensional axis, thereby modulating processes including energy and amino acid metabolism, transcription, translation, cell cycle control, and cellular stress response. We propose that genetic effects can propagate through large parts of molecular networks because of the functional requirement to centrally coordinate the activity of fundamental cellular processes.
Collapse
Affiliation(s)
- Matthias Weith
- Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesUniversity of CologneCologneGermany
| | - Jan Großbach
- Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesUniversity of CologneCologneGermany
| | | | - Ludovic Gillet
- Department of BiologyInstitute of Molecular Systems Biology, ETH ZürichZürichSwitzerland
| | - María Rodríguez‐López
- Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentUniversity College LondonLondonUK
| | - Samuel Marguerat
- Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentUniversity College LondonLondonUK
| | - Christopher T Workman
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Paola Picotti
- Department of BiologyInstitute of Molecular Systems Biology, ETH ZürichZürichSwitzerland
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentUniversity College LondonLondonUK
| | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems Biology, ETH ZürichZürichSwitzerland
| | - Andreas Beyer
- Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesUniversity of CologneCologneGermany
| |
Collapse
|
15
|
Caligaris M, Sampaio-Marques B, Hatakeyama R, Pillet B, Ludovico P, De Virgilio C, Winderickx J, Nicastro R. The Yeast Protein Kinase Sch9 Functions as a Central Nutrient-Responsive Hub That Calibrates Metabolic and Stress-Related Responses. J Fungi (Basel) 2023; 9:787. [PMID: 37623558 PMCID: PMC10455444 DOI: 10.3390/jof9080787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Yeast cells are equipped with different nutrient signaling pathways that enable them to sense the availability of various nutrients and adjust metabolism and growth accordingly. These pathways are part of an intricate network since most of them are cross-regulated and subject to feedback regulation at different levels. In yeast, a central role is played by Sch9, a protein kinase that functions as a proximal effector of the conserved growth-regulatory TORC1 complex to mediate information on the availability of free amino acids. However, recent studies established that Sch9 is more than a TORC1-effector as its activity is tuned by several other kinases. This allows Sch9 to function as an integrator that aligns different input signals to achieve accuracy in metabolic responses and stress-related molecular adaptations. In this review, we highlight the latest findings on the structure and regulation of Sch9, as well as its role as a nutrient-responsive hub that impacts on growth and longevity of yeast cells. Given that most key players impinging on Sch9 are well-conserved, we also discuss how studies on Sch9 can be instrumental to further elucidate mechanisms underpinning healthy aging in mammalians.
Collapse
Affiliation(s)
- Marco Caligaris
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Riko Hatakeyama
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Benjamin Pillet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, B-3001 Heverlee, Belgium;
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| |
Collapse
|
16
|
Minden S, Aniolek M, Noorman H, Takors R. Mimicked Mixing-Induced Heterogeneities of Industrial Bioreactors Stimulate Long-Lasting Adaption Programs in Ethanol-Producing Yeasts. Genes (Basel) 2023; 14:genes14050997. [PMID: 37239357 DOI: 10.3390/genes14050997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Commercial-scale bioreactors create an unnatural environment for microbes from an evolutionary point of view. Mixing insufficiencies expose individual cells to fluctuating nutrient concentrations on a second-to-minute scale while transcriptional and translational capacities limit the microbial adaptation time from minutes to hours. This mismatch carries the risk of inadequate adaptation effects, especially considering that nutrients are available at optimal concentrations on average. Consequently, industrial bioprocesses that strive to maintain microbes in a phenotypic sweet spot, during lab-scale development, might suffer performance losses when said adaptive misconfigurations arise during scale-up. Here, we investigated the influence of fluctuating glucose availability on the gene-expression profile in the industrial yeast Ethanol Red™. The stimulus-response experiment introduced 2 min glucose depletion phases to cells growing under glucose limitation in a chemostat. Even though Ethanol Red™ displayed robust growth and productivity, a single 2 min depletion of glucose transiently triggered the environmental stress response. Furthermore, a new growth phenotype with an increased ribosome portfolio emerged after complete adaptation to recurring glucose shortages. The results of this study serve a twofold purpose. First, it highlights the necessity to consider the large-scale environment already at the experimental development stage, even when process-related stressors are moderate. Second, it allowed the deduction of strain engineering guidelines to optimize the genetic background of large-scale production hosts.
Collapse
Affiliation(s)
- Steven Minden
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Maria Aniolek
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Henk Noorman
- Royal DSM, 2613 AX Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
17
|
Gutiérrez-Santiago F, Navarro F. Transcription by the Three RNA Polymerases under the Control of the TOR Signaling Pathway in Saccharomyces cerevisiae. Biomolecules 2023; 13:biom13040642. [PMID: 37189389 DOI: 10.3390/biom13040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Ribosomes are the basis for protein production, whose biogenesis is essential for cells to drive growth and proliferation. Ribosome biogenesis is highly regulated in accordance with cellular energy status and stress signals. In eukaryotic cells, response to stress signals and the production of newly-synthesized ribosomes require elements to be transcribed by the three RNA polymerases (RNA pols). Thus, cells need the tight coordination of RNA pols to adjust adequate components production for ribosome biogenesis which depends on environmental cues. This complex coordination probably occurs through a signaling pathway that links nutrient availability with transcription. Several pieces of evidence strongly support that the Target of Rapamycin (TOR) pathway, conserved among eukaryotes, influences the transcription of RNA pols through different mechanisms to ensure proper ribosome components production. This review summarizes the connection between TOR and regulatory elements for the transcription of each RNA pol in the budding yeast Saccharomyces cerevisiae. It also focuses on how TOR regulates transcription depending on external cues. Finally, it discusses the simultaneous coordination of the three RNA pols through common factors regulated by TOR and summarizes the most important similarities and differences between S. cerevisiae and mammals.
Collapse
Affiliation(s)
- Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| |
Collapse
|
18
|
Druseikis M, Mottola A, Berman J. The Metabolism of Susceptibility: Clearing the FoG Between Tolerance and Resistance in Candida albicans. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:36-46. [DOI: 10.1007/s40588-023-00189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
19
|
Botman D, Kanagasabapathi S, Savakis P, Teusink B. Using the AKAR3-EV biosensor to assess Sch9p- and PKA-signalling in budding yeast. FEMS Yeast Res 2023; 23:foad029. [PMID: 37173282 PMCID: PMC10237333 DOI: 10.1093/femsyr/foad029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
Budding yeast uses the TORC1-Sch9p and cAMP-PKA signalling pathways to regulate adaptations to changing nutrient environments. Dynamic and single-cell measurements of the activity of these cascades will improve our understanding of the cellular adaptation of yeast. Here, we employed the AKAR3-EV biosensor developed for mammalian cells to measure the cellular phosphorylation status determined by Sch9p and PKA activity in budding yeast. Using various mutant strains and inhibitors, we show that AKAR3-EV measures the Sch9p- and PKA-dependent phosphorylation status in intact yeast cells. At the single-cell level, we found that the phosphorylation responses are homogenous for glucose, sucrose, and fructose, but heterogeneous for mannose. Cells that start to grow after a transition to mannose correspond to higher normalized Förster resonance energy transfer (FRET) levels, in line with the involvement of Sch9p and PKA pathways to stimulate growth-related processes. The Sch9p and PKA pathways have a relatively high affinity for glucose (K0.5 of 0.24 mM) under glucose-derepressed conditions. Lastly, steady-state FRET levels of AKAR3-EV seem to be independent of growth rates, suggesting that Sch9p- and PKA-dependent phosphorylation activities are transient responses to nutrient transitions. We believe that the AKAR3-EV sensor is an excellent addition to the biosensor arsenal for illuminating cellular adaptation in single yeast cells.
Collapse
Affiliation(s)
- Dennis Botman
- Systems Biology Lab, AIMMS/A-LIFE, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sineka Kanagasabapathi
- Systems Biology Lab, AIMMS/A-LIFE, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Philipp Savakis
- Systems Biology Lab, AIMMS/A-LIFE, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Biology Lab, AIMMS/A-LIFE, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
20
|
Minden S, Aniolek M, Noorman H, Takors R. Performing in spite of starvation: How Saccharomyces cerevisiae maintains robust growth when facing famine zones in industrial bioreactors. Microb Biotechnol 2022; 16:148-168. [PMID: 36479922 PMCID: PMC9803336 DOI: 10.1111/1751-7915.14188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/13/2022] Open
Abstract
In fed-batch operated industrial bioreactors, glucose-limited feeding is commonly applied for optimal control of cell growth and product formation. Still, microbial cells such as yeasts and bacteria are frequently exposed to glucose starvation conditions in poorly mixed zones or far away from the feedstock inlet point. Despite its commonness, studies mimicking related stimuli are still underrepresented in scale-up/scale-down considerations. This may surprise as the transition from glucose limitation to starvation has the potential to provoke regulatory responses with negative consequences for production performance. In order to shed more light, we performed gene-expression analysis of Saccharomyces cerevisiae grown in intermittently fed chemostat cultures to study the effect of limitation-starvation transitions. The resulting glucose concentration gradient was representative for the commercial scale and compelled cells to tolerate about 76 s with sub-optimal substrate supply. Special attention was paid to the adaptation status of the population by discriminating between first time and repeated entry into the starvation regime. Unprepared cells reacted with a transiently reduced growth rate governed by the general stress response. Yeasts adapted to the dynamic environment by increasing internal growth capacities at the cost of rising maintenance demands by 2.7%. Evidence was found that multiple protein kinase A (PKA) and Snf1-mediated regulatory circuits were initiated and ramped down still keeping the cells in an adapted trade-off between growth optimization and down-regulation of stress response. From this finding, primary engineering guidelines are deduced to optimize both the production host's genetic background and the design of scale-down experiments.
Collapse
Affiliation(s)
- Steven Minden
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Maria Aniolek
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Henk Noorman
- Royal DSMDelftThe Netherlands,Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| |
Collapse
|
21
|
Gutiérrez-Santiago F, Cintas-Galán M, Martín-Expósito M, del Carmen Mota-Trujillo M, Cobo-Huesa C, Perez-Fernandez J, Navarro Gómez F. A High-Copy Suppressor Screen Reveals a Broad Role of Prefoldin-like Bud27 in the TOR Signaling Pathway in Saccharomyces cerevisiae. Genes (Basel) 2022; 13:genes13050748. [PMID: 35627133 PMCID: PMC9141189 DOI: 10.3390/genes13050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Bud27 is a prefoldin-like, a member of the family of ATP-independent molecular chaperones that associates with RNA polymerases I, II, and III in Saccharomyces cerevisiae. Bud27 and its human ortholog URI perform several functions in the cytoplasm and the nucleus. Both proteins participate in the TOR signaling cascade by coordinating nutrient availability with gene expression, and lack of Bud27 partially mimics TOR pathway inactivation. Bud27 regulates the transcription of the three RNA polymerases to mediate the synthesis of ribosomal components for ribosome biogenesis through the TOR cascade. This work presents a high-copy suppression screening of the temperature sensitivity of the bud27Δ mutant. It shows that Bud27 influences different TOR-dependent processes. Our data also suggest that Bud27 can impact some of these TOR-dependent processes: cell wall integrity and autophagy induction.
Collapse
Affiliation(s)
- Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - María Cintas-Galán
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Manuel Martín-Expósito
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Maria del Carmen Mota-Trujillo
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Cristina Cobo-Huesa
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Jorge Perez-Fernandez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Francisco Navarro Gómez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
- Correspondence: ; Tel.: +34-953-212771; Fax: +34-953-211875
| |
Collapse
|