1
|
Jamadar A, Ward CJ, Remadevi V, Varghese MM, Pabla NS, Gumz ML, Rao R. Circadian Clock Disruption and Growth of Kidney Cysts in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2025; 36:378-392. [PMID: 39401086 PMCID: PMC11888963 DOI: 10.1681/asn.0000000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Key Points Lack of Bmal1 , a circadian clock protein in renal collecting ducts disrupted the clock and increased cyst growth and fibrosis in an autosomal dominant polycystic kidney disease mouse model. Bmal1 gene deletion increased cell proliferation by increasing lipogenesis in kidney cells. Thus, circadian clock disruption could be a risk factor for accelerated disease progression in patients with autosomal dominant polycystic kidney disease. Background Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 and PKD2 genes and often progresses to kidney failure. ADPKD progression is not uniform among patients, suggesting that factors secondary to the PKD1/2 gene mutation could regulate the rate of disease progression. Here, we tested the effect of circadian clock disruption on ADPKD progression. Circadian rhythms are regulated by cell-autonomous circadian clocks composed of clock proteins. BMAL1 is a core constituent of the circadian clock. Methods To disrupt the circadian clock, we deleted Bmal1 gene in the renal collecting ducts of the Pkd1 RC/RC (RC/RC) mouse model of ADPKD (RC/RC;Bmal1 f/f;Pkhd1 cre, called double knockout [DKO] mice) and in Pkd1 knockout mouse inner medullary collecting duct cells (Pkd1Bmal1 KO mouse renal inner medullary collecting duct cells). Only male mice were used. Results Human nephrectomy ADPKD kidneys showed altered clock gene expression when compared with normal control human kidneys. When compared with RC/RC kidneys, DKO kidneys showed significantly altered clock gene expression, increased cyst growth, cell proliferation, apoptosis, and fibrosis. DKO kidneys also showed increased lipogenesis and cholesterol synthesis–related gene expression and increased tissue triglyceride levels compared with RC/RC kidneys. Similarly, in vitro , Pkd1Bmal1 KO cells showed altered clock genes, increased lipogenesis and cholesterol synthesis–related genes, and reduced fatty acid oxidation–related gene expression compared with Pkd1KO cells. The Pkd1Bmal1 KO cells showed increased cell proliferation compared with Pkd1KO cells, which was rescued by pharmacological inhibition of lipogenesis. Conclusions Renal collecting duct–specific Bmal1 gene deletion disrupted the circadian clock and triggered accelerated ADPKD progression by altering lipid metabolism–related gene expression.
Collapse
Affiliation(s)
- Abeda Jamadar
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Christopher J. Ward
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Viji Remadevi
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Meekha M. Varghese
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Michelle L. Gumz
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Physiology and Aging, Department of Medicine, University of Florida, Gainesville, Florida
| | - Reena Rao
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
2
|
Yang S, Ye Z, Chen L, Zhou X, Li W, Cheng F. Circadian Clock Gene Bmal1: A Molecular Bridge from AKI to CKD. Biomolecules 2025; 15:77. [PMID: 39858471 PMCID: PMC11762869 DOI: 10.3390/biom15010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) represent two frequently observed clinical conditions. AKI is characterized by an abrupt decrease in glomerular filtration rate (GFR), generally associated with elevated serum creatinine (sCr), blood urea nitrogen (BUN), and electrolyte imbalances. This condition usually persists for approximately a week, causing a transient reduction in kidney function. If these abnormalities continue beyond 90 days, the condition is redefined as chronic kidney disease (CKD) or may advance to end-stage renal disease (ESRD). Recent research increasingly indicates that maladaptive repair mechanisms after AKI significantly contribute to the development of CKD. Thus, implementing early interventions to halt the progression from AKI to CKD has the potential to markedly improve patient outcomes. Although considerable research has been conducted, the exact mechanisms linking AKI to CKD are complex, and effective treatments remain limited. Kidney function is influenced by circadian rhythms, with the circadian gene Bmal1 being vital in managing these cycles. Recent research indicates that Bmal1 is significantly involved in the progression of both AKI and CKD. In this study, we conducted a retrospective analysis of Bmal1's role in AKI and CKD, reviewed recent research advancements, and investigated how Bmal1 influences the pathological mechanisms underlying the progression from AKI to CKD. Additionally, we highlighted gaps in the existing research and examined the potential of Bmal1 as a therapeutic target in kidney disease management. This work aims to provide meaningful insights for future studies on the role of the circadian gene Bmal1 in the transition from AKI to CKD, with the goal of identifying therapeutic approaches to mitigate kidney disease progression.
Collapse
Affiliation(s)
- Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Lijia Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| |
Collapse
|
3
|
Procopio SB, Esser KA. Clockwork conditioning: Aligning the skeletal muscle clock with time-of-day exercise for cardiometabolic health. J Mol Cell Cardiol 2025; 198:36-44. [PMID: 39615287 PMCID: PMC11780665 DOI: 10.1016/j.yjmcc.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Circadian rhythms have evolved to synchronize gene expression, physiology, and behavior with time-of-day changes in the external environment. In every mammalian cell exists a core clock mechanism that consists of a transcriptional-translational feedback loop that drives rhythmic gene expression. Circadian disruption, as observed in shift workers and genetic mouse models, contributes to the onset and progression of cardiometabolic disorders. The central clock, located in the hypothalamus, is uniquely sensitive to external light cues, while the peripheral clocks are responsive to non-photic stimuli such as feeding and activity in addition to signals from the central clock. Recent research has illustrated the sensitivity of the skeletal muscle circadian clock to exercise timing, offering a promising avenue for therapeutic intervention in cardiometabolic health. Here we provide an in-depth examination of the molecular mechanisms underlying skeletal muscle clock function and its impact on cardiometabolic pathways, including glucose and lipid metabolism, as well as inflammation. To highlight the role of exercise as a time-cue for the skeletal muscle clock, we discuss evidence of exercise-induced shifts in the skeletal muscle clock and the differential response to exercise performed at different times of the day. Furthermore, we present data in support of time-of-day exercise as a potential therapeutic strategy for mitigating cardiometabolic disease burden. By exploring the relationship between the skeletal muscle clock, exercise timing, and cardiometabolic health, we identify new areas for future research and offer valuable insights into novel therapeutic approaches aimed at improving cardiometabolic disease outcomes.
Collapse
Affiliation(s)
- Spencer B Procopio
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
4
|
Jamadar A, Ward CJ, Remadevi V, Varghese MM, Pabla NS, Gumz ML, Rao R. Circadian clock disruption and growth of kidney cysts in autosomal dominant polycystic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606676. [PMID: 39211074 PMCID: PMC11361200 DOI: 10.1101/2024.08.05.606676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 and PKD2 genes, and often progresses to kidney failure. ADPKD progression is not uniform among patients, suggesting that factors secondary to the PKD1/2 gene mutation could regulate the rate of disease progression. Here we tested the effect of circadian clock disruption on ADPKD progression. Circadian rhythms are regulated by cell-autonomous circadian clocks composed of clock proteins. BMAL1 is a core constituent of the circadian clock. Methods To disrupt the circadian clock, we deleted Bmal1 gene in the renal collecting ducts of the Pkd1 RC/RC (RC/RC) mouse model of ADPKD (RC/RC; Bmal1 f/f ; Pkhd1 cre , called DKO mice), and in Pkd1 knockout mouse inner medullary collecting duct cells ( Pkd1Bmal1 KO mIMCD3 cells). Only male mice were used. Results Human nephrectomy ADPKD kidneys and Pkd1 KO mIMCD3 cells showed reduced Bmal1 gene expression compared to normal controls. When compared to RC/RC kidneys, DKO kidneys showed significantly altered clock gene expression, increased cyst growth, cell proliferation, apoptosis and fibrosis. DKO kidneys also showed increased lipogenesis and cholesterol synthesis-related gene expression, and increased tissue triglyceride levels compared to RC/RC kidneys. Similarly, in vitro, Pkd1Bmal1 KO cells showed altered clock genes, increased lipogenesis and cholesterol synthesis-related genes, and reduced fatty-acid oxidation-related gene expression compared to Pkd1KO cells. The Pkd1Bmal1 KO cells showed increased cell proliferation compared to Pkd1KO cells, which was rescued by pharmacological inhibition of lipogenesis. Conclusion Renal collecting duct specific Bmal1 gene deletion disrupts the circadian clock and triggers accelerated ADPKD progression by altering lipid metabolism-related gene expression. Key points Lack of BMAL1, a circadian clock protein in renal collecting ducts disrupted the clock and increased cyst growth and fibrosis in an ADPKD mouse model.BMAL1 gene deletion increased cell proliferation by increasing lipogenesis in kidney cells.Thus, circadian clock disruption could be a risk factor for accelerated disease progression in patients with ADPKD.
Collapse
|
6
|
Crislip GR, Costello HM, Juffre A, Cheng KY, Lynch IJ, Johnston JG, Drucker CB, Bratanatawira P, Agarwal A, Mendez VM, Thelwell RS, Douma LG, Wingo CS, Alli AA, Scindia YM, Gumz ML. Male kidney-specific BMAL1 knockout mice are protected from K +-deficient, high-salt diet-induced blood pressure increases. Am J Physiol Renal Physiol 2023; 325:F656-F668. [PMID: 37706232 PMCID: PMC10874679 DOI: 10.1152/ajprenal.00126.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
The circadian clock protein basic helix-loop-helix aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a transcription factor that impacts kidney function, including blood pressure (BP) control. Previously, we have shown that male, but not female, kidney-specific cadherin Cre-positive BMAL1 knockout (KS-BMAL1 KO) mice exhibit lower BP compared with littermate controls. The goal of this study was to determine the BP phenotype and immune response in male KS-BMAL1 KO mice in response to a low-K+ high-salt (LKHS) diet. BP, renal inflammatory markers, and immune cells were measured in male mice following an LKHS diet. Male KS-BMAL1 KO mice had lower BP following the LKHS diet compared with control mice, yet their circadian rhythm in pressure remained unchanged. Additionally, KS-BMAL1 KO mice exhibited lower levels of renal proinflammatory cytokines and immune cells following the LKHS diet compared with control mice. KS-BMAL1 KO mice were protected from the salt-sensitive hypertension observed in control mice and displayed an attenuated immune response following the LKHS diet. These data suggest that BMAL1 plays a role in driving the BP increase and proinflammatory environment that occurs in response to an LKHS diet.NEW & NOTEWORTHY We show here, for the first time, that kidney-specific BMAL1 knockout mice are protected from blood pressure (BP) increases and immune responses to a salt-sensitive diet. Other kidney-specific BMAL1 knockout models exhibit lower BP phenotypes under basal conditions. A salt-sensitive diet exacerbates this genotype-specific BP response, leading to fewer proinflammatory cytokines and immune cells in knockout mice. These data demonstrate the importance of distal segment BMAL1 in BP and immune responses to a salt-sensitive environment.
Collapse
Affiliation(s)
- G Ryan Crislip
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
| | - Hannah M Costello
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
| | - Alexandria Juffre
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| | - Kit-Yan Cheng
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - I Jeanette Lynch
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida, United States
| | - Jermaine G Johnston
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
- Department of Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida, United States
| | - Charles B Drucker
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Phillip Bratanatawira
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Annanya Agarwal
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| | - Victor M Mendez
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Ryanne S Thelwell
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Lauren G Douma
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| | - Charles S Wingo
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida, United States
| | - Abdel A Alli
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
| | - Yogesh M Scindia
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| |
Collapse
|