1
|
Zagare A, Sauter T, Barmpa K, Pacheco M, Krüger R, Schwamborn JC, Saraiva C. MIRO1 mutation leads to metabolic maladaptation resulting in Parkinson's disease-associated dopaminergic neuron loss. NPJ Syst Biol Appl 2025; 11:37. [PMID: 40246848 PMCID: PMC12006346 DOI: 10.1038/s41540-025-00509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/16/2025] [Indexed: 04/19/2025] Open
Abstract
MIRO1 is a mitochondrial outer membrane protein important for mitochondrial distribution, dynamics and bioenergetics. Over the last decade, evidence has pointed to a link between MIRO1 and Parkinson's disease (PD) pathogenesis. Moreover, a heterozygous MIRO1 mutation (p.R272Q) was identified in a PD patient, from which an iPSC-derived midbrain organoid model was derived, showing MIRO1 mutant-dependent selective loss of dopaminergic neurons. Herein, we use patient-specific iPSC-derived midbrain organoids carrying the MIRO1 p.R272Q mutation to further explore the cellular and molecular mechanisms involved in dopaminergic neuron degeneration. Using single-cell RNA sequencing (scRNAseq) analysis and metabolic modeling we show that the MIRO1 p.R272Q mutation affects the dopaminergic neuron developmental path leading to metabolic deficits and disrupted neuron-astrocyte metabolic crosstalk, which might represent an important pathogenic mechanism leading to their loss.
Collapse
Affiliation(s)
- Alise Zagare
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Thomas Sauter
- Systems Biology and Epigenetics Group, Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Kyriaki Barmpa
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Maria Pacheco
- Systems Biology and Epigenetics Group, Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1 A-B rue Thomas Edison, L-1445, Strassen, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, 4, rue Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Jens Christian Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg.
| | - Claudia Saraiva
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2, place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
2
|
Chapman MA, Sorg BA. A Systematic Review of Extracellular Matrix-Related Alterations in Parkinson's Disease. Brain Sci 2024; 14:522. [PMID: 38928523 PMCID: PMC11201521 DOI: 10.3390/brainsci14060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
The role of the extracellular matrix (ECM) in Parkinson's disease (PD) is not well understood, even though it is critical for neuronal structure and signaling. This systematic review identified the top deregulated ECM-related pathways in studies that used gene set enrichment analyses (GSEA) to document transcriptomic, proteomic, or genomic alterations in PD. PubMed and Google scholar were searched for transcriptomics, proteomics, or genomics studies that employed GSEA on data from PD tissues or cells and reported ECM-related pathways among the top-10 most enriched versus controls. Twenty-seven studies were included, two of which used multiple omics analyses. Transcriptomics and proteomics studies were conducted on a variety of tissue and cell types. Of the 17 transcriptomics studies (16 data sets), 13 identified one or more adhesion pathways in the top-10 deregulated gene sets or pathways, primarily related to cell adhesion and focal adhesion. Among the 8 proteomics studies, 5 identified altered overarching ECM gene sets or pathways among the top 10. Among the 4 genomics studies, 3 identified focal adhesion pathways among the top 10. The findings summarized here suggest that ECM organization/structure and cell adhesion (particularly focal adhesion) are altered in PD and should be the focus of future studies.
Collapse
Affiliation(s)
| | - Barbara A. Sorg
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, USA;
| |
Collapse
|
3
|
Rosety I, Zagare A, Saraiva C, Nickels S, Antony P, Almeida C, Glaab E, Halder R, Velychko S, Rauen T, Schöler HR, Bolognin S, Sauter T, Jarazo J, Krüger R, Schwamborn JC. Impaired neuron differentiation in GBA-associated Parkinson's disease is linked to cell cycle defects in organoids. NPJ Parkinsons Dis 2023; 9:166. [PMID: 38110400 PMCID: PMC10728202 DOI: 10.1038/s41531-023-00616-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
The mechanisms underlying Parkinson's disease (PD) etiology are only partially understood despite intensive research conducted in the field. Recent evidence suggests that early neurodevelopmental defects might play a role in cellular susceptibility to neurodegeneration. To study the early developmental contribution of GBA mutations in PD we used patient-derived iPSCs carrying a heterozygous N370S mutation in the GBA gene. Patient-specific midbrain organoids displayed GBA-PD relevant phenotypes such as reduction of GCase activity, autophagy impairment, and mitochondrial dysfunction. Genome-scale metabolic (GEM) modeling predicted changes in lipid metabolism which were validated with lipidomics analysis, showing significant differences in the lipidome of GBA-PD. In addition, patient-specific midbrain organoids exhibited a decrease in the number and complexity of dopaminergic neurons. This was accompanied by an increase in the neural progenitor population showing signs of oxidative stress-induced damage and premature cellular senescence. These results provide insights into how GBA mutations may lead to neurodevelopmental defects thereby predisposing to PD pathology.
Collapse
Affiliation(s)
- Isabel Rosety
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- OrganoTherapeutics SARL-S, Esch-sur-Alzette, Luxembourg
| | - Alise Zagare
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Claudia Saraiva
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sarah Nickels
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Antony
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Almeida
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, MPG White Paper Group - Animal Testing in the Max Planck Society, Muenster, Germany
| | - Thomas Rauen
- Max Planck Institute for Molecular Biomedicine, MPG White Paper Group - Animal Testing in the Max Planck Society, Muenster, Germany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, MPG White Paper Group - Animal Testing in the Max Planck Society, Muenster, Germany
| | - Silvia Bolognin
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Javier Jarazo
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- OrganoTherapeutics SARL-S, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversial Translational Medicine, Luxembourg Institute of Health (LIH), 1 A-B rue Thomas Ediison, L-1445, Strassen, Luxembourg
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
4
|
Li X, Deng Q, Kuang Y, Mao H, Yao M, Lin C, Luo X, Xu P. Identifying NFKB1, STAT3, and CDKN1A as Baicalein's Potential Hub Targets in Parkinson's Disease-related α-synuclein-mediated Pathways by Integrated Bioinformatics Strategies. Curr Pharm Des 2023; 29:2426-2437. [PMID: 37859325 DOI: 10.2174/0113816128259065231011114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The overexpression, accumulation, and cell-to-cell transmission of α-synuclein leads to the deterioration of Parkinson's disease (PD). Previous studies suggest that Baicalein (BAI) can bind to α-synuclein and inhibit α-synuclein aggregation and secretion. However, it is still unclear whether BAI can intervene with the pathogenic molecules in α-synuclein-mediated PD pathways beyond directly targeting α-synuclein per se. METHODS This study aimed to systematically investigate BAI's potential targets in PD-related A53T mutant α-synuclein-mediated pathways by integrating data mining, network pharmacological analysis, and molecular docking simulation techniques. RESULTS The results suggest that BAI may target genes that are dysregulated in synaptic transmission, vesicle trafficking, gene transcription, protein binding, extracellular matrix formation, and kinase activity in α-synucleinmediated pathways. NFKB1, STAT3, and CDKN1A are BAI's potential hub targets in these pathways. CONCLUSION Our findings highlight BAI's potentiality to modulate α-synuclein-mediated pathways beyond directly targeting α-synuclein per se.
Collapse
Affiliation(s)
- Xingjian Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiyin Deng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoyun Kuang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hengxu Mao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meiling Yao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changsong Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaodong Luo
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Prakash N. Developmental pathways linked to the vulnerability of adult midbrain dopaminergic neurons to neurodegeneration. Front Mol Neurosci 2022; 15:1071731. [PMID: 36618829 PMCID: PMC9815185 DOI: 10.3389/fnmol.2022.1071731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The degeneration of dopaminergic and other neurons in the aging brain is considered a process starting well beyond the infantile and juvenile period. In contrast to other dopamine-associated neuropsychiatric disorders, such as schizophrenia and drug addiction, typically diagnosed during adolescence or young adulthood and, thus, thought to be rooted in the developing brain, Parkinson's Disease (PD) is rarely viewed as such. However, evidences have accumulated suggesting that several factors might contribute to an increased vulnerability to death of the dopaminergic neurons at an already very early (developmental) phase in life. Despite the remarkable ability of the brain to compensate such dopamine deficits, the early loss or dysfunction of these neurons might predispose an individual to suffer from PD because the critical threshold of dopamine function will be reached much earlier in life, even if the time-course and strength of naturally occurring and age-dependent dopaminergic cell death is not markedly altered in this individual. Several signaling and transcriptional pathways required for the proper embryonic development of the midbrain dopaminergic neurons, which are the most affected in PD, either continue to be active in the adult mammalian midbrain or are reactivated at the transition to adulthood and under neurotoxic conditions. The persistent activity of these pathways often has neuroprotective functions in adult midbrain dopaminergic neurons, whereas the reactivation of silenced pathways under pathological conditions can promote the survival and even regeneration of these neurons in the lesioned or aging brain. This article summarizes our current knowledge about signaling and transcription factors involved in midbrain dopaminergic neuron development, whose reduced gene dosage or signaling activity are implicated in a lower survival rate of these neurons in the postnatal or aging brain. It also discusses the evidences supporting the neuroprotection of the midbrain dopaminergic system after the external supply or ectopic expression of some of these secreted and nuclear factors in the adult and aging brain. Altogether, the timely monitoring and/or correction of these signaling and transcriptional pathways might be a promising approach to a much earlier diagnosis and/or prevention of PD.
Collapse
|