1
|
Zi C, Ma X, Zheng M, Zhu Y. VDAC1-NF-κB/p65-mediated S100A16 contributes to myocardial ischemia/reperfusion injury by regulating oxidative stress and inflammatory response via calmodulin/CaMKK2/AMPK pathway. Eur J Pharmacol 2025; 987:177158. [PMID: 39613175 DOI: 10.1016/j.ejphar.2024.177158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
Myocardial injury triggers intense inflammatory reactions and oxidative stress responses. S100 calcium-binding protein A16 (S100A16), a multi-functional calcium (Ca2+)-binding protein, participates in inflammatory responses and contributes to ischemia/reperfusion (I/R) injury. Nevertheless, the precise mechanism by which S100A16 operates in myocardial I/R injury remains uncertain. Cardiac I/R injury was produced by ligation/release of the left anterior descending artery, and mouse cardiac cells were subjected to hypoxia/reoxygenation (H/R) to determine the biological effects in vitro. We demonstrated that S100A16 was upregulated in the ischemic hearts and cardiac cells after I/R and H/R injury. Adenovirus-mediated S100A16 inhibition led to a considerable improvement in cardiac function with a reduced infarct size, accompanied by a reduction in cardiomyocyte apoptosis. Similar effects of S100A16 inhibition on inflammation and reactive oxygen species (ROS) production were observed in cultured cardiomyocytes. Importantly, we showed that I/R and H/R treatment upregulated the expression of voltage-dependent anion channel 1 (VDAC1), which subsequently activated NF-κB/p65 to facilitate the binding of NF-κB/p65 to the S100A16 promoter, thereby activating the transcription and expression of S100A16. Mechanically, S100A16 responded to increasing Ca2+ and interacted with calmodulin (CaM) to regulate the activation of calcium/calmodulin-dependent protein kinase 2 (CAMKK2)/AMPK pathway. In conclusion, VDAC1 sustained the NF-κB p65 pathway activation to elicit increased S100A16 expression, contributing to myocardial damage and heart failure post-I/R via the CaM/CaMKK2/AMPK pathway. This study revealed a crucial role of the VDAC1-S100A16 axis in the process of myocardial I/R injury, providing novel molecular targets for the treatment of cardiac conditions associated with I/R injury.
Collapse
Affiliation(s)
- Congna Zi
- Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China.
| | - Xian Ma
- Department of Blood Transfusion, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China.
| | - Maodong Zheng
- Department of Pharmacy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Ying Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| |
Collapse
|
2
|
Zhu Z, Tang G, Shi M, Fang M, Zhang X, Xu H. Identification of the Oncogenic Role of the Circ_0001326/miR-577/VDAC1 Cascade in Prostate Cancer. J Biochem Mol Toxicol 2024; 38:e70034. [PMID: 39555732 DOI: 10.1002/jbt.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024]
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer death among men worldwide. Circular RNAs (circRNAs) have been implicated in the pathogenesis of PCa. However, the precise action of circ_0001326 in PCa malignant progression is still unknown. The levels of circ_0001326, miR-577 and voltage dependent anion channel 1 (VDAC1) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell proliferation, colony formation, apoptosis, migration and invasion were evaluated by the Cell Counting Kit-8 (CCK-8), EdU staining, colony formation, flow cytometry, wound-healing and transwell assays, respectively. Targeted relationships among circ_0001326, miR-577 and VDAC1 were confirmed by dual-luciferase reporter assays. Xenograft experiments were performed to detect the role of circ_0001326 in tumor growth. Our data revealed that circ_0001326 was overexpressed in PCa tissues and cells. Circ_0001326 depletion repressed PCa cell proliferation, migration, and invasion and enhanced apoptosis in vitro, as well as hampered tumor growth in vivo. Mechanistically, circ_0001326 directly targeted miR-577, and VDAC1 was directly targeted and suppressed by miR-577. Moreover, the effects of circ_0001326 knockdown on PCa cell functional behaviors were mediated by miR-577. VDAC1 silencing phenocopied miR-577 overexpression in regulating PCa cell functional behaviors in vitro. Furthermore, circ_0001326 regulated VDAC1 expression through sponging miR-577. Our findings showed that circ_0001326 regulated PCa cell functional behaviors at least partly through targeting the miR-577/VDAC1 axis.
Collapse
Affiliation(s)
- Zhirong Zhu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Guiliang Tang
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Mengqi Shi
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Mengjie Fang
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Xiaolong Zhang
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Huali Xu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
3
|
Arif T, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Decoding Cancer through Silencing the Mitochondrial Gatekeeper VDAC1. Biomolecules 2024; 14:1304. [PMID: 39456237 PMCID: PMC11506819 DOI: 10.3390/biom14101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Mitochondria serve as central hubs for regulating numerous cellular processes that include metabolism, apoptosis, cell cycle progression, proliferation, differentiation, epigenetics, immune signaling, and aging. The voltage-dependent anion channel 1 (VDAC1) functions as a crucial mitochondrial gatekeeper, controlling the flow of ions, such as Ca2+, nucleotides, and metabolites across the outer mitochondrial membrane, and is also integral to mitochondria-mediated apoptosis. VDAC1 functions in regulating ATP production, Ca2+ homeostasis, and apoptosis, which are essential for maintaining mitochondrial function and overall cellular health. Most cancer cells undergo metabolic reprogramming, often referred to as the "Warburg effect", supplying tumors with energy and precursors for the biosynthesis of nucleic acids, phospholipids, fatty acids, cholesterol, and porphyrins. Given its multifunctional nature and overexpression in many cancers, VDAC1 presents an attractive target for therapeutic intervention. Our research has demonstrated that silencing VDAC1 expression using specific siRNA in various tumor types leads to a metabolic rewiring of the malignant cancer phenotype. This results in a reversal of oncogenic properties that include reduced tumor growth, invasiveness, stemness, epithelial-mesenchymal transition. Additionally, VDAC1 depletion alters the tumor microenvironment by reducing angiogenesis and modifying the expression of extracellular matrix- and structure-related genes, such as collagens and glycoproteins. Furthermore, VDAC1 depletion affects several epigenetic-related enzymes and substrates, including the acetylation-related enzymes SIRT1, SIRT6, and HDAC2, which in turn modify the acetylation and methylation profiles of histone 3 and histone 4. These epigenetic changes can explain the altered expression levels of approximately 4000 genes that are associated with reversing cancer cells oncogenic properties. Given VDAC1's critical role in regulating metabolic and energy processes, targeting it offers a promising strategy for anti-cancer therapy. We also highlight the role of VDAC1 expression in various disease pathologies, including cardiovascular, neurodegenerative, and viral and bacterial infections, as explored through siRNA targeting VDAC1. Thus, this review underscores the potential of targeting VDAC1 as a strategy for addressing high-energy-demand cancers. By thoroughly understanding VDAC1's diverse roles in metabolism, energy regulation, mitochondrial functions, and other cellular processes, silencing VDAC1 emerges as a novel and strategic approach to combat cancer.
Collapse
Affiliation(s)
- Tasleem Arif
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
4
|
Melnikov N, Pittala S, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Mitochondrial VDAC1 Silencing in Urethane-Induced Lung Cancer Inhibits Tumor Growth and Alters Cancer Oncogenic Properties. Cancers (Basel) 2024; 16:2970. [PMID: 39272828 PMCID: PMC11393979 DOI: 10.3390/cancers16172970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Alterations in cellular metabolism are vital for cancer cell growth and motility. Here, we focused on metabolic reprogramming and changes in tumor hallmarks in lung cancer by silencing the expression of the mitochondrial gatekeeper VDAC1. To better mimic the clinical situation of lung cancer, we induced lung cancer in A/J mice using the carcinogen urethane and examined the effectiveness of si-m/hVDAC1-B encapsulated in PLGA-PEI nanoparticles. si-m/hVDAC1-B, given intravenously, induced metabolism reprogramming and inhibited tumor growth as monitored using MRI. Mice treated with non-targeted (NT) PLGA-PEI-si-NT showed many large size tumors in the lungs, while in PLGA-PEI-si-m/hVDAC-B-treated mice, lung tumor number and area were markedly decreased. Immunofluorescence staining showed decreased expression of VDAC1 and metabolism-related proteins and altered expression of cancer stem cell markers. Morphological analysis showed two types of tumors differing in their morphology; cell size and organization within the tumor. Based on specific markers, the two tumor types were identified as small cell (SCLC) and non-small cell (NSCLC) lung cancer. These two types of tumors were found only in control tumors, suggesting that PLGA-PEI-si-m/hVDAC1-B also targeted SCLC. Indeed, using a xenograft mouse model of human-derived SCLC H69 cells, si-m/hVDAC1-B inhibited tumor growth and reduced the expression of VDAC1 and energy- and metabolism-related enzymes, and of cancer stem cells in the established xenograft. Additionally, intravenous treatment of urethane-induced lung cancer mice with the VDAC1-based peptide, Retro-Tf-D-LP4, showed inhibition of tumor growth, and decreased expression levels of metabolism- and cancer stem cells-related proteins. Thus, silencing VDAC1 targeting both NSCLC and SCLC points to si-VDAC1 as a possible therapeutic tool to treat these lung cancer types. This is important as target NSCLC tumors undergo transformation to SCLC.
Collapse
Affiliation(s)
- Nataly Melnikov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Srinivas Pittala
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
5
|
Alhozeel B, Pandey SK, Shteinfer-Kuzmine A, Santhanam M, Shoshan-Barmatz V. Silencing the Mitochondrial Gatekeeper VDAC1 as a Potential Treatment for Bladder Cancer. Cells 2024; 13:627. [PMID: 38607066 PMCID: PMC11012128 DOI: 10.3390/cells13070627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
The strategy for treating bladder cancer (BC) depends on whether there is muscle invasion or not, with the latter mostly treated with intravesical therapy, such as with bacillus Calmette-Guérin (BCG). However, BCG treatment is unsuccessful in 70% of patients, who are then subjected to radical cystectomy. Although immune-checkpoint inhibitors have been approved as a second-line therapy for a subset of BC patients, these have failed to meet primary endpoints in clinical trials. Thus, it is crucial to find a new treatment. The mitochondrial gatekeeper protein, the voltage-dependent anion channel 1 (VDAC1), mediates metabolic crosstalk between the mitochondria and cytosol and is involved in apoptosis. It is overexpressed in many cancer types, as shown here for BC, pointing to its significance in high-energy-demanding cancer cells. The BC cell lines UM-UC3 and HTB-5 express high VDAC1 levels compared to other cancer cell lines. VDAC1 silencing in these cells using siRNA that recognizes both human and mouse VDAC1 (si-m/hVDAC1-B) reduces cell viability, mitochondria membrane potential, and cellular ATP levels. Here, we used two BC mouse models: subcutaneous UM-UC3 cells and chemically induced BC using the carcinogen N-Butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Subcutaneous UM-UC3-derived tumors treated with si-m/hVDAC1 showed inhibited tumor growth and reprogrammed metabolism, as reflected in the reduced expression of metabolism-related proteins, including Glut1, hexokinase, citrate synthase, complex-IV, and ATP synthase, suggesting reduced metabolic activity. Furthermore, si-m/hVDAC1-B reduced the expression levels of cancer-stem-cell-related proteins (cytokeratin-14, ALDH1a), modifying the tumor microenvironment, including decreased angiogenesis, extracellular matrix, tumor-associated macrophages, and inhibited epithelial-mesenchymal transition. The BBN-induced BC mouse model showed a clear carcinoma, with damaged bladder morphology and muscle-invasive tumors. Treatment with si-m/hVDAC1-B encapsulated in PLGA-PEI nanoparticles that were administered intravesically directly to the bladder showed a decreased tumor area and less bladder morphology destruction and muscle invasion. Overall, the obtained results point to the potential of si-m/hVDAC1-B as a possible therapeutic tool for treating bladder cancer.
Collapse
Affiliation(s)
- Belal Alhozeel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (B.A.); (S.K.P.); (M.S.)
| | - Swaroop Kumar Pandey
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (B.A.); (S.K.P.); (M.S.)
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Manikandan Santhanam
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (B.A.); (S.K.P.); (M.S.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (B.A.); (S.K.P.); (M.S.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| |
Collapse
|
6
|
Jia Y, Liu R, Shi L, Feng Y, Zhang L, Guo N, He A, Kong G. Integrative analysis of the prognostic value and immune microenvironment of mitophagy-related signature for multiple myeloma. BMC Cancer 2023; 23:859. [PMID: 37700273 PMCID: PMC10496355 DOI: 10.1186/s12885-023-11371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a fatal malignant tumor in hematology. Mitophagy plays vital roles in the pathogenesis and drug sensitivity of MM. METHODS We acquired transcriptomic expression data and clinical index of MM patients from NCI public database, and 36 genes involved in mitophagy from the gene set enrichment analysis (GSEA) database. Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was conducted to construct a risk score prognostic model. Kaplan-Meier survival analysis and receiver operation characteristic curves (ROC) were conducted to identify the efficiency of prognosis and diagnosis. ESTIMATE algorithm and immune-related single-sample gene set enrichment analysis (ssGSEA) was performed to uncover the level of immune infiltration. QRT-PCR was performed to verify gene expression in clinical samples of MM patients. The sensitivity to chemotherapy drugs was evaluated upon the database of the genomics of drug sensitivity in cancer (GDSC). RESULTS Fifty mitophagy-related genes were differently expressed in two independent cohorts. Ten out of these genes were identified to be related to MM overall survival (OS) rate. A prognostic risk signature model was built upon on these genes: VDAC1, PINK1, VPS13C, ATG13, and HUWE1, which predicted the survival of MM accurately and stably both in training and validation cohorts. MM patients suffered more adverse prognosis showed more higher risk core. In addition, the risk score was considered as an independent prognostic element for OS of MM patients by multivariate cox regression analysis. Functional pathway enrichment analysis of differentially expressed genes (DEGs) based on risk score showed terms of cell cycle, immune response, mTOR pathway, and MYC targets were obviously enriched. Furthermore, MM patients with higher risk score were observed lower immune scores and lower immune infiltration levels. The results of qRT-PCR verified VDAC1, PINK1, and HUWE1 were dysregulated in new diagnosed MM patients. Finally, further analysis indicated MM patients showed more susceptive to bortezomib, lenalidomide and rapamycin in high-risk group. CONCLUSION Our research provided a neoteric prognostic model of MM based on mitophagy genes. The immune infiltration level based on risk score paved a better understanding of the participation of mitophagy in MM.
Collapse
Affiliation(s)
- Yachun Jia
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Luyi Shi
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yuandong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Linlin Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Ni Guo
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Aili He
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
7
|
Lemeshko VV. VDAC as a voltage-dependent mitochondrial gatekeeper under physiological conditions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184175. [PMID: 37201560 DOI: 10.1016/j.bbamem.2023.184175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Mitochondria, composed of two membranes, play a key role in energy production in eukaryotic cells. The main function of the inner membrane is oxidative phosphorylation, while the mitochondrial outer membrane (MOM) seems to control the energy flux and exchange of various charged metabolites between mitochondria and the cytosol. Metabolites cross MOM via the various isoforms of voltage-dependent anion channel (VDAC). In turn, VDACs interact with some enzymes, other proteins and molecules, including drugs. This work aimed to analyze various literature experimental data related to targeting mitochondrial VDACs and VDAC-kinase complexes on the basis of the hypothesis of generation of the outer membrane potential (OMP) and OMP-dependent reprogramming of cell energy metabolism. Our previous model of the VDAC-hexokinase-linked generation of OMP was further complemented in this study with an additional regulation of the MOM permeability by the OMP-dependent docking of cytosolic proteins like tubulin to VDACs. Computational analysis of the model suggests that OMP changes might be involved in the mechanisms of apoptosis promotion through the so-called transient hyperpolarization of mitochondria. The high concordance of the performed computational estimations with many published experimental data allows concluding that OMP generation under physiological conditions is highly probable and VDAC might function as an OMP-dependent gatekeeper of mitochondria, controlling cell life and death. The proposed model of OMP generation allows understanding in more detail the mechanisms of cancer death resistance and anticancer action of various drugs and treatments influencing VDAC voltage-gating properties, VDAC content, mitochondrial hexokinase activity and VDAC-kinase interactions in MOM.
Collapse
Affiliation(s)
- Victor V Lemeshko
- Universidad Nacional de Colombia, Sede Medellín, Carrera 65, Nro. 59A - 110, Medellín, Colombia.
| |
Collapse
|
8
|
Dutta A, Halder P, Gayen A, Mukherjee A, Mukherjee C, Majumder S. Increase in primary cilia number and length upon VDAC1 depletion contributes to attenuated proliferation of cancer cells. Exp Cell Res 2023:113671. [PMID: 37276998 DOI: 10.1016/j.yexcr.2023.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Primary cilia (PCs) that are present in most human cells and perform sensory function or signal transduction are lost in many solid tumors. Previously, we identified VDAC1, best known to regulate mitochondrial bioenergetics, to negatively regulate ciliogenesis. Here, we show that downregulation of VDAC1 in pancreatic cancer-derived Panc1 and glioblastoma-derived U-87MG cells significantly increased ciliation. Those PCs were significantly longer than the control cells. Such increased ciliation possibly inhibited cell cycle, which contributed to reduced proliferation of these cells. VDAC1-depletion also led to longer PCs in quiescent RPE1 cells. Therefore, serum-induced PC disassembly was slower in VDAC1-depleted RPE1 cells. Overall, this study reiterates the importance of VDAC1 in modulating tumorigenesis, due to its novel role in regulating PC disassembly and cilia length.
Collapse
Affiliation(s)
- Arpita Dutta
- Institute of Health Sciences, Presidency University, India
| | | | - Anakshi Gayen
- Institute of Health Sciences, Presidency University, India; RNABio Lab, Institute of Health Sciences, Presidency University, India
| | - Avik Mukherjee
- RNABio Lab, Institute of Health Sciences, Presidency University, India
| | | | | |
Collapse
|
9
|
Allon I, Pettesh J, Livoff A, Schlapobersky M, Nahlieli O, Michaeli E. Voltage-Dependent Anion Channel 1 Expression in Oral Malignant and Premalignant Lesions. Diagnostics (Basel) 2023; 13:diagnostics13071225. [PMID: 37046443 PMCID: PMC10093190 DOI: 10.3390/diagnostics13071225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND The voltage-dependent anion channel 1 protein (VDAC1) plays a role in cellular metabolism and survival. It was found to be down or upregulated (overexpressed) in different malignancies but it was never studied in application to oral lesions. The purpose of this study was to retrospectively evaluate the expression of VDAC1 in biopsies of oral premalignant, malignant, and malignancy-neutral lesions and to examine the possible correlations to their clinicopathological parameters. MATERIALS AND METHODS 103 biopsies including 49 oral squamous cell carcinoma, 33 epithelial dysplasia, and 21 fibrous hyperplasia samples were immunohistochemically stained with anti-VDAC1 antibodies for semi-quantitative evaluation. The antibody detection was performed with 3,3'-diaminobenzidine (DAB). The clinicopathological information was examined for possible correlations with VDAC1. RESULTS VDAC1 expression was lower in oral squamous cell carcinoma 0.63 ± 0.40 and in oral epithelial dysplasia 0.61 ± 0.36 biopsies compared to fibrous hyperplasia biopsies 1.45 ± 0.28 (p < 0.01 for both; Kruskal-Wallis test). CONCLUSION Oral squamous cell carcinoma and epithelial dysplasia tissues demonstrated decreased VDAC1 protein expression if compared to fibrous hyperplasia samples, but were not different from each other, suggesting that the involvement of VDAC1 in oral carcinogenesis is an early stage event, regulating cells to live or die.
Collapse
Affiliation(s)
- Irit Allon
- Institute of Pathology, Barzilai University Medical Center, Ashkelon 7830604, Israel
- School of Health Sciences, The Ben-Gurion University of the Negev, Beer-Sheba 84105, Israel
| | - Jacob Pettesh
- Oral Medicine Unit, Barzilai University Medical Center, Ashkelon 7830604, Israel
| | - Alejandro Livoff
- Institute of Pathology, Barzilai University Medical Center, Ashkelon 7830604, Israel
| | - Mark Schlapobersky
- Institute of Pathology, Barzilai University Medical Center, Ashkelon 7830604, Israel
| | - Oded Nahlieli
- School of Health Sciences, The Ben-Gurion University of the Negev, Beer-Sheba 84105, Israel
- Department of Oral & Maxillofacial Surgery, Barzilai University Medical Center, Ashkelon 7830604, Israel
| | - Eli Michaeli
- School of Health Sciences, The Ben-Gurion University of the Negev, Beer-Sheba 84105, Israel
| |
Collapse
|