1
|
Engler S, Buchner J. The evolution and diversification of the Hsp90 co-chaperone system. Biol Chem 2025:hsz-2025-0112. [PMID: 40261701 DOI: 10.1515/hsz-2025-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
The molecular chaperone Hsp90 is the central element of a chaperone machinery in the cytosol of eukaryotic cells that is characterized by a large number of structurally and functionally different co-chaperones that influence the core chaperone component in different ways and increase its influence on the proteome. From yeast to humans, the number of Hsp90 co-chaperones has increased from 14 to over 40, and new co-chaperones are still being discovered. While Hsp90 itself has only undergone limited changes in structure and mechanism from yeast to humans, its increased importance and contribution to different processes in humans is based on the evolution and expansion of the cohort of co-chaperones. In this review, we provide an overview of Hsp90 co-chaperones, focusing on their roles in regulating Hsp90 function and their evolution from yeast to humans.
Collapse
Affiliation(s)
- Sonja Engler
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| |
Collapse
|
2
|
Palacios-Abella A, López-Perrote A, Boskovic J, Fonseca S, Úrbez C, Rubio V, Llorca O, Alabadí D. The structure of the R2T complex reveals a different architecture from the related HSP90 cochaperone R2TP. Structure 2025; 33:740-752.e8. [PMID: 40015274 DOI: 10.1016/j.str.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/19/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
The R2TP complex is a specialized HSP90 cochaperone essential for the maturation of macromolecular complexes such as RNAPII and TORC1. R2TP is formed by a hetero-hexameric ring of AAA-ATPases RuvBL1 and RuvBL2, which interact with RPAP3 and PIH1D1. Several R2TP-like complexes have been described, but these are less well characterized. Here, we identified, characterized and determined the cryo-electron microscopy (cryo-EM) structure of R2T from Arabidopsis thaliana, which lacks PIH1D1 and is probably the only form of the complex in seed plants. In contrast to R2TP, R2T is organized as two rings of AtRuvBL1-AtRuvBL2a interacting back-to-back, with one AtRPAP3 anchored per ring. AtRPAP3 has no effect on the ATPase activity of AtRuvBL1-AtRuvBL2a and binds with a different stoichiometry than in human R2TP. We show that the interaction of AtRPAP3 with AtRuvBL2a and AtHSP90 occurs via a conserved mechanism. However, the distinct architectures of R2T and R2TP suggest differences in their functions and mechanisms.
Collapse
Affiliation(s)
- Alberto Palacios-Abella
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Andrés López-Perrote
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Jasminka Boskovic
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sandra Fonseca
- Centro Nacional de Biotecnología (CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Vicente Rubio
- Centro Nacional de Biotecnología (CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Oscar Llorca
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain.
| |
Collapse
|
3
|
Abéza C, Busse P, Paiva ACF, Chagot ME, Schneider J, Robert MC, Vandermoere F, Schaeffer C, Charpentier B, Sousa PMF, Bandeiras TM, Manival X, Cianferani S, Bertrand E, Verheggen C. The HSP90/R2TP Quaternary Chaperone Scaffolds Assembly of the TSC Complex. J Mol Biol 2024; 436:168840. [PMID: 39490680 DOI: 10.1016/j.jmb.2024.168840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The R2TP chaperone is composed of the RUVBL1/RUVBL2 AAA+ ATPases and two adapter proteins, RPAP3 and PIH1D1. Together with HSP90, it functions in the assembly of macromolecular complexes that are often involved in cell proliferation. Here, proteomic experiments using the isolated PIH domain reveals additional R2TP partners, including the Tuberous Sclerosis Complex (TSC) and many transcriptional complexes. The TSC is a key regulator of mTORC1 and is composed of TSC1, TSC2 and TBC1D7. We show a direct interaction of TSC1 with the PIH phospho-binding domain of PIH1D1, which is, surprisingly, phosphorylation independent. Via the use of mutants and KO cell lines, we observe that TSC2 makes independent interactions with HSP90 and the TPR domains of RPAP3. Moreover, inactivation of PIH1D1 or the RUVBL1/2 ATPase activity inhibits the association of TSC1 with TSC2. Taken together, these data suggest a model in which the R2TP recruits TSC1 via PIH1D1 and TSC2 via RPAP3 and HSP90, and use the chaperone-like activities of RUVBL1/2 to stimulate their assembly.
Collapse
Affiliation(s)
- Claire Abéza
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Philipp Busse
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana C F Paiva
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | - Justine Schneider
- LSMBO, IPHC, Université de Strasbourg, CNRS UMR7178, Strasbourg, France
| | - Marie-Cécile Robert
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France
| | | | | | | | - Pedro M F Sousa
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal
| | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Sarah Cianferani
- LSMBO, IPHC, Université de Strasbourg, CNRS UMR7178, Strasbourg, France
| | - Edouard Bertrand
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France.
| | - Céline Verheggen
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France.
| |
Collapse
|
4
|
Shokrollahi N, Tehrani Fateh S, Nouri M, Behnam A, Moghimi P, Sadeghi H, Mirfakhraie R, Roudgari H, Jamshidi S, Miryounesi M, Ghasemi MR. The first Iranian patient with You-Hoover-Fong syndrome and a review of the literature on 27 cases: expanding the genotypic and phenotypic spectrum. Neurol Sci 2024; 45:3979-3987. [PMID: 38421525 DOI: 10.1007/s10072-024-07413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The ultra-rare autosomal recessive genetic disorder, You-Hoover-Fong Syndrome (YHFS), is caused by defects in the TELO2 gene and is characterized by intellectual disability, developmental delay, and ocular impairments. This study aims to contribute to a better understanding of YHFS by reviewing previous cases and introducing a novel variant in a new case. METHODS Whole exome sequencing (WES) was conducted on the proband to identify genetic variants, and Sanger sequencing was used to confirm variants within the family. This article presents a comprehensive collection of reported cases of YHFS, incorporating both molecular and clinical data, through an extensive literature search and analysis of English-language studies published until June 2023. RESULTS Using WES, a novel homozygous missense variant, c.1799A > G (p. Tyr600Cys), was identified in the TELO2 gene in a 4-year-old Iranian male patient. Novel clinical features, including choanal atresia and clubfoot, were also identified. A comprehensive literature review identified 27 patients with YHFS, with 20 variants in the TELO2 gene. Missense pathogenic variants were the most common type of pathogenic variant, and the most common features were microcephaly and intellectual impairment. CONCLUSION This study presents the first case of pathogenic variants in TELO2 gene in Iran, expands the genotypic and phenotypic spectrum of YHFS and contributes to the growing body of literature pertaining to YHFS. Furthermore, our findings highlight the importance of genetic testing for non-consanguineous carrier screening, as compound heterozygosity may be a significant factor in the development of YHFS. Further research is needed to clarify the molecular mechanisms underlying YHFS pathogenesis.
Collapse
Affiliation(s)
- Nima Shokrollahi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Nouri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Behnam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parinaz Moghimi
- School of Medicine, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Roudgari
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Jamshidi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Reza Ghasemi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Frommelt F, Fossati A, Uliana F, Wendt F, Xue P, Heusel M, Wollscheid B, Aebersold R, Ciuffa R, Gstaiger M. DIP-MS: ultra-deep interaction proteomics for the deconvolution of protein complexes. Nat Methods 2024; 21:635-647. [PMID: 38532014 PMCID: PMC11009110 DOI: 10.1038/s41592-024-02211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 02/14/2024] [Indexed: 03/28/2024]
Abstract
Most proteins are organized in macromolecular assemblies, which represent key functional units regulating and catalyzing most cellular processes. Affinity purification of the protein of interest combined with liquid chromatography coupled to tandem mass spectrometry (AP-MS) represents the method of choice to identify interacting proteins. The composition of complex isoforms concurrently present in the AP sample can, however, not be resolved from a single AP-MS experiment but requires computational inference from multiple time- and resource-intensive reciprocal AP-MS experiments. Here we introduce deep interactome profiling by mass spectrometry (DIP-MS), which combines AP with blue-native-PAGE separation, data-independent acquisition with mass spectrometry and deep-learning-based signal processing to resolve complex isoforms sharing the same bait protein in a single experiment. We applied DIP-MS to probe the organization of the human prefoldin family of complexes, resolving distinct prefoldin holo- and subcomplex variants, complex-complex interactions and complex isoforms with new subunits that were experimentally validated. Our results demonstrate that DIP-MS can reveal proteome modularity at unprecedented depth and resolution.
Collapse
Affiliation(s)
- Fabian Frommelt
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| | - Andrea Fossati
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
| | - Federico Uliana
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Fabian Wendt
- Department of Health Sciences and Technology (D-HEST), Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
| | - Peng Xue
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Guangzhou National Laboratory, Guang Zhou, China
| | - Moritz Heusel
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology (D-HEST), Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Rodolfo Ciuffa
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Stanković D, Tain LS, Uhlirova M. Xrp1 governs the stress response program to spliceosome dysfunction. Nucleic Acids Res 2024; 52:2093-2111. [PMID: 38303573 PMCID: PMC10954486 DOI: 10.1093/nar/gkae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Co-transcriptional processing of nascent pre-mRNAs by the spliceosome is vital to regulating gene expression and maintaining genome integrity. Here, we show that the deficiency of functional U5 small nuclear ribonucleoprotein particles (snRNPs) in Drosophila imaginal cells causes extensive transcriptome remodeling and accumulation of highly mutagenic R-loops, triggering a robust stress response and cell cycle arrest. Despite compromised proliferative capacity, the U5 snRNP-deficient cells increased protein translation and cell size, causing intra-organ growth disbalance before being gradually eliminated via apoptosis. We identify the Xrp1-Irbp18 heterodimer as the primary driver of transcriptional and cellular stress program downstream of U5 snRNP malfunction. Knockdown of Xrp1 or Irbp18 in U5 snRNP-deficient cells attenuated JNK and p53 activity, restored normal cell cycle progression and growth, and inhibited cell death. Reducing Xrp1-Irbp18, however, did not rescue the splicing defects, highlighting the requirement of accurate splicing for cellular and tissue homeostasis. Our work provides novel insights into the crosstalk between splicing and the DNA damage response and defines the Xrp1-Irbp18 heterodimer as a critical sensor of spliceosome malfunction and mediator of the stress-induced cellular senescence program.
Collapse
Affiliation(s)
- Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Luke S Tain
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
7
|
Huo M, Rai SK, Nakatsu K, Deng Y, Jijiwa M. Subverting the Canon: Novel Cancer-Promoting Functions and Mechanisms for snoRNAs. Int J Mol Sci 2024; 25:2923. [PMID: 38474168 PMCID: PMC10932220 DOI: 10.3390/ijms25052923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) constitute a class of intron-derived non-coding RNAs ranging from 60 to 300 nucleotides. Canonically localized in the nucleolus, snoRNAs play a pivotal role in RNA modifications and pre-ribosomal RNA processing. Based on the types of modifications they involve, such as methylation and pseudouridylation, they are classified into two main families-box C/D and H/ACA snoRNAs. Recent investigations have revealed the unconventional synthesis and biogenesis strategies of snoRNAs, indicating their more profound roles in pathogenesis than previously envisioned. This review consolidates recent discoveries surrounding snoRNAs and provides insights into their mechanistic roles in cancer. It explores the intricate interactions of snoRNAs within signaling pathways and speculates on potential therapeutic solutions emerging from snoRNA research. In addition, it presents recent findings on the long non-coding small nucleolar RNA host gene (lncSNHG), a subset of long non-coding RNAs (lncRNAs), which are the transcripts of parental SNHGs that generate snoRNA. The nucleolus, the functional epicenter of snoRNAs, is also discussed. Through a deconstruction of the pathways driving snoRNA-induced oncogenesis, this review aims to serve as a roadmap to guide future research in the nuanced field of snoRNA-cancer interactions and inspire potential snoRNA-related cancer therapies.
Collapse
Affiliation(s)
- Matthew Huo
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA;
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Sudhir Kumar Rai
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Ken Nakatsu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| |
Collapse
|
8
|
Mao YQ, Seraphim TV, Wan Y, Wu R, Coyaud E, Bin Munim M, Mollica A, Laurent E, Babu M, Mennella V, Raught B, Houry WA. DPCD is a regulator of R2TP in ciliogenesis initiation through Akt signaling. Cell Rep 2024; 43:113713. [PMID: 38306274 DOI: 10.1016/j.celrep.2024.113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/31/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024] Open
Abstract
R2TP is a chaperone complex consisting of the AAA+ ATPases RUVBL1 and RUVBL2, as well as RPAP3 and PIH1D1 proteins. R2TP is responsible for the assembly of macromolecular complexes mainly acting through different adaptors. Using proximity-labeling mass spectrometry, we identified deleted in primary ciliary dyskinesia (DPCD) as an adaptor of R2TP. Here, we demonstrate that R2TP-DPCD influences ciliogenesis initiation through a unique mechanism by interaction with Akt kinase to regulate its phosphorylation levels rather than its stability. We further show that DPCD is a heart-shaped monomeric protein with two domains. A highly conserved region in the cysteine- and histidine-rich domains-containing proteins and SGT1 (CS) domain of DPCD interacts with the RUVBL2 DII domain with high affinity to form a stable R2TP-DPCD complex both in cellulo and in vitro. Considering that DPCD is one among several CS-domain-containing proteins found to associate with RUVBL1/2, we propose that RUVBL1/2 are CS-domain-binding proteins that regulate complex assembly and downstream signaling.
Collapse
Affiliation(s)
- Yu-Qian Mao
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Thiago V Seraphim
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Yimei Wan
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Ruikai Wu
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Muhammad Bin Munim
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Antonio Mollica
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Estelle Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mohan Babu
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Vito Mennella
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; MRC Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QR, UK; Department of Pathology, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QP, UK
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
9
|
Buchner J, Alasady MJ, Backe SJ, Blagg BSJ, Carpenter RL, Colombo G, Gelis I, Gewirth DT, Gierasch LM, Houry WA, Johnson JL, Kang BH, Kao AW, LaPointe P, Mattoo S, McClellan AJ, Neckers LM, Prodromou C, Rasola A, Sager RA, Theodoraki MA, Truman AW, Truttman MC, Zachara NE, Bourboulia D, Mollapour M, Woodford MR. Second international symposium on the chaperone code, 2023. Cell Stress Chaperones 2024; 29:88-96. [PMID: 38316354 PMCID: PMC10939070 DOI: 10.1016/j.cstres.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Affiliation(s)
- Johannes Buchner
- Department of Bioscience, Technical University of Munich, D85748, Garching, Germany.
| | - Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Richard L Carpenter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Bloomington, IN, 47405, USA; Medical Sciences, Indiana University School of Medicine, Bloomington, IN, 47405, USA; Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 47405, USA
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Ioannis Gelis
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Daniel T Gewirth
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Lila M Gierasch
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Hauptman-Woodward Medical Research Institute, Buffalo, NY, 14203, USA
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844, USA
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Aimee W Kao
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Paul LaPointe
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA; Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Amie J McClellan
- Division of Science and Mathematics, Bennington College, Bennington, VT, 05201, USA
| | - Leonard M Neckers
- Center for Cancer Research, National Cancer Institute, Rockville, MD, 20892, USA
| | | | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | | | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Matthias C Truttman
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA; Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
10
|
Pinard M, Moursli A, Coulombe B. Drugs targeting the particle for arrangement of quaternary structure (PAQosome) and protein complex assembly. Expert Opin Drug Discov 2024; 19:57-71. [PMID: 37840283 DOI: 10.1080/17460441.2023.2267974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION The PAQosome is a 12-subunit complex that acts as a co-factor of the molecular chaperones HSP90 and HSP70. This co-chaperone has been shown to participate in assembly and maturation of several protein complexes, including nuclear RNA polymerases, RNA processing factors, the ribosome, PIKKs, and others. Subunits of the PAQosome, adaptors, and clients have been reported to be involved in various diseases, making them interesting targets for drug discovery. AREA COVERED In this review, the authors cover the detailed mechanisms of PAQosome and chaperone function. Specifically, the authors summarize the status of the PAQosome and some related chaperones and co-chaperones as candidate targets for drug discovery. Indeed, a number of compounds are currently being tested for the development of treatments against diseases, such as cancers and neurodegenerative conditions. EXPERT OPINION Searching for new drugs targeting the PAQosome requires a better understanding of PAQosome subunit interactions and the discovery of new interaction partners. Thus, PAQosome subunit crystallization is an important experiment to initiate virtual screening against new target and the development of in silico tools such as AlphaFold-multimer could accelerate the search for new interaction partner and determine more rapidly the interaction pocket needed for virtual drug screening.
Collapse
Affiliation(s)
- Maxime Pinard
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Asmae Moursli
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Benoit Coulombe
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
López-Perrote A, Serna M, Llorca O. Maturation and Assembly of mTOR Complexes by the HSP90-R2TP-TTT Chaperone System: Molecular Insights and Mechanisms. Subcell Biochem 2024; 104:459-483. [PMID: 38963496 DOI: 10.1007/978-3-031-58843-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth and metabolism, integrating environmental signals to regulate anabolic and catabolic processes, regulating lipid synthesis, growth factor-induced cell proliferation, cell survival, and migration. These activities are performed as part of two distinct complexes, mTORC1 and mTORC2, each with specific roles. mTORC1 and mTORC2 are elaborated dimeric structures formed by the interaction of mTOR with specific partners. mTOR functions only as part of these large complexes, but their assembly and activation require a dedicated and sophisticated chaperone system. mTOR folding and assembly are temporarily separated with the TELO2-TTI1-TTI2 (TTT) complex assisting the cotranslational folding of mTOR into a native conformation. Matured mTOR is then transferred to the R2TP complex for assembly of active mTORC1 and mTORC2 complexes. R2TP works in concert with the HSP90 chaperone to promote the incorporation of additional subunits to mTOR and dimerization. This review summarizes our current knowledge on how the HSP90-R2TP-TTT chaperone system facilitates the maturation and assembly of active mTORC1 and mTORC2 complexes, discussing interactions, structures, and mechanisms.
Collapse
Affiliation(s)
- Andrés López-Perrote
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, Madrid, Spain.
| | - Marina Serna
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, Madrid, Spain
| | - Oscar Llorca
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, Madrid, Spain.
| |
Collapse
|
12
|
An Editorial on the Special Issue ‘Hsp90 Structure, Mechanism and Disease’. Biomolecules 2023; 13:biom13030547. [PMID: 36979482 PMCID: PMC10045984 DOI: 10.3390/biom13030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Hsp90 is known for its role in the activation of an eclectic set of regulatory and signal transduction proteins [...]
Collapse
|
13
|
van Oosten-Hawle P, Backe SJ, Ben-Zvi A, Bourboulia D, Brancaccio M, Brodsky J, Clark M, Colombo G, Cox MB, De Los Rios P, Echtenkamp F, Edkins A, Freeman B, Goloubinoff P, Houry W, Johnson J, LaPointe P, Li W, Mezger V, Neckers L, Nillegoda NB, Prahlad V, Reitzel A, Scherz-Shouval R, Sistonen L, Tsai FTF, Woodford MR, Mollapour M, Truman AW. Second Virtual International Symposium on Cellular and Organismal Stress Responses, September 8-9, 2022. Cell Stress Chaperones 2023; 28:1-9. [PMID: 36602710 PMCID: PMC9877255 DOI: 10.1007/s12192-022-01318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
The Second International Symposium on Cellular and Organismal Stress Responses took place virtually on September 8-9, 2022. This meeting was supported by the Cell Stress Society International (CSSI) and organized by Patricija Van Oosten-Hawle and Andrew Truman (University of North Carolina at Charlotte, USA) and Mehdi Mollapour (SUNY Upstate Medical University, USA). The goal of this symposium was to continue the theme from the initial meeting in 2020 by providing a platform for established researchers, new investigators, postdoctoral fellows, and students to present and exchange ideas on various topics on cellular stress and chaperones. We will summarize the highlights of the meeting here and recognize those that received recognition from the CSSI.
Collapse
Affiliation(s)
- Patricija van Oosten-Hawle
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Jeff Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Melody Clark
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Marc B Cox
- Border Biomedical Research Center, Department of Pharmaceutical Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Paolo De Los Rios
- Institute of Physics & Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Frank Echtenkamp
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Adrienne Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Brian Freeman
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pierre Goloubinoff
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel Aviv, Israel
| | - Walid Houry
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Jill Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844, USA
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Wei Li
- The Department of Dermatology and the USC-Norris Comprehensive Cancer Center, Los Angeles, USA
- University of Southern California Keck Medical Center, Los Angeles, CA, 90089, USA
| | - Valerie Mezger
- CNRS, and Epigenetics and Cell Fate Center, Université Paris Cité, Paris, France
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Nadinath B Nillegoda
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Centre for Dementia and Brain Repair at the Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Adam Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Francis T F Tsai
- Departments of Biochemistry and Molecular Biology, Molecular and Cellular Biology, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA.
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
14
|
Webster SF, Ghalei H. Maturation of small nucleolar RNAs: from production to function. RNA Biol 2023; 20:715-736. [PMID: 37796118 PMCID: PMC10557570 DOI: 10.1080/15476286.2023.2254540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Small Nucleolar RNAs (snoRNAs) are an abundant group of non-coding RNAs with well-defined roles in ribosomal RNA processing, folding and chemical modification. Besides their classic roles in ribosome biogenesis, snoRNAs are also implicated in several other cellular activities including regulation of splicing, transcription, RNA editing, cellular trafficking, and miRNA-like functions. Mature snoRNAs must undergo a series of processing steps tightly regulated by transiently associating factors and coordinated with other cellular processes including transcription and splicing. In addition to their mature forms, snoRNAs can contribute to gene expression regulation through their derivatives and degradation products. Here, we review the current knowledge on mechanisms of snoRNA maturation, including the different pathways of processing, and the regulatory mechanisms that control snoRNA levels and complex assembly. We also discuss the significance of studying snoRNA maturation, highlight the gaps in the current knowledge and suggest directions for future research in this area.
Collapse
Affiliation(s)
- Sarah F. Webster
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|