1
|
Lu D, Wang L, Yu Y, Li L, Su X, Sun Y, Yang H, Wan X, Li C, Xu L, Yang Q, Tan Z, Liang H. Genome-wide identification and functional analyses of the TCP gene family in Carthamus tinctorius L. Sci Rep 2025; 15:12970. [PMID: 40234668 PMCID: PMC12000515 DOI: 10.1038/s41598-025-97743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/07/2025] [Indexed: 04/17/2025] Open
Abstract
TCP transcription factors play crucial roles in regulating plant growth, development, and the response to abiotic stress. However, members of the TCP family in Carthamus tinctorius L. have not been reported yet. To address this, we conducted a genome-wide analysis of the TCP gene family in C. tinctorius. By using bioinformatics tools and transcriptome data, we identified 22 CtTCP genes unevenly distributed across 7 chromosomes. Collinear relationships were found in 13 genes pairs, and 14 genes involved in whole-genome or segmental duplication events. Amino acid sequence alignment and phylogenetic analysis classified CtTCP into Class I (PCF) and Class II (CIN and CYC/TB1). The motifs and gene structures within each subgroup were similar, and each subgroup contained unique motifs. Additionally, CtTCP1,3,22 were confirmed to localize in the nucleus as predicted. On the basis of transcriptome data and phylogenetic analysis, CtTCP5 and CtTCP4 may play significant roles in the development of C. tinctorius leaves and flowers, respectively. Meanwhile, CtTCP4,11,12,15 might influence the formation of red petals in C. tinctorius. qRT‒PCR analysis showed that the expression of most CtTCP genes were upregulated after exposure to ABA, drought, salt and cold stresses. Specifically CtTCP1, 3, 5 were shown to play important roles in adverse stress. This study provides insights into the functions of CtTCP genes and their potential for improving stress tolerance and flower color in C. tinctorius. Future research should focus on functional validation and breeding applications.
Collapse
Affiliation(s)
- Dandan Lu
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional, Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Lina Wang
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional, Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Yongliang Yu
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional, Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Lei Li
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional, Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Xiaoyu Su
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional, Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Yao Sun
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional, Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Hongqi Yang
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional, Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, 100700, China
| | - Chunming Li
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional, Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Lanjie Xu
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional, Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Qing Yang
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional, Chinese Medicine Resources, Zhengzhou, 450002, Henan, China
| | - Zhengwei Tan
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- Provincial Key Laboratory of Conservation and Utilization of Traditional, Chinese Medicine Resources, Zhengzhou, 450002, Henan, China.
| | - Huizhen Liang
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- Provincial Key Laboratory of Conservation and Utilization of Traditional, Chinese Medicine Resources, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
2
|
Jone MJH, Siddique MNA, Biswas MK, Hossain MR. Genome-wide analysis of TCP family genes and their constitutive expression pattern analysis in the melon (Cucumis melo). Genes Genomics 2025; 47:367-382. [PMID: 39849192 DOI: 10.1007/s13258-025-01617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/13/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done. OBJECTIVE The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions. METHODS The chromosomal location, gene structure, conserved motifs, protein domains, structural homology, cis-regulating elements, transcript expression patterns, and potential protein-protein interactions were analyzed using various databases and webtools. RESULTS A total of 29 putative TCP genes are identified in melon. These genes were classified into two classes: Class-I (13 genes) and Class-II (16 genes). The results revealed that the putative CmTCP genes are distributed across nine of the twelve melon chromosomes and exhibit diverse expression patterns in different tissues which mostly indicates their potential role in floral organ development, lateral branching, growth and development. Phylogenetic analysis suggests that some CmTCP genes may have similar functions to their homologs in other plant species, while others may have undergone functional diversification. CONCLUSION This study paves the way for future investigations into the specific roles of individual CmTCP genes in melon and for elucidating the mechanisms by which TCP proteins regulate leaf elongation, floral development, and lateral branching.
Collapse
Affiliation(s)
- Md Jahid Hasan Jone
- Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Nure Adil Siddique
- Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Manosh Kumar Biswas
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Mohammad Rashed Hossain
- Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
3
|
Li T, Tian P, Wang X, Li M, Xing S. Overexpression of TCP5 or Its Dominant Repressor Form, TCP5-SRDX, Causes Male Infertility in Arabidopsis. Int J Mol Sci 2025; 26:1813. [PMID: 40076439 PMCID: PMC11899387 DOI: 10.3390/ijms26051813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
TCP transcription factors have long been known to play a crucial role in leaf development, but their significance in reproduction has recently been revealed. TCP5 is a member of class II of the TCP family, which predominantly regulates cell differentiation. This study used overexpression and SRDX fusion to evaluate the role of TCP5 in anther development. TCP5 overexpression resulted in lower fertility, primarily due to anther non-dehiscence. We also observed reduced lignin accumulation in the anther endothecium. In addition, TCP5 overexpression resulted in smaller anthers with fewer pollen sacs and pollen due to early-anther defects before meiosis. TCP5 showed expression in early anthers, including the epidermis, endothecium, middle layer, tapetum, sporogenous cells (pollen mother cells), and vascular bundles. Conversely, during meiosis, the TCP5 signal was only detected in the tapetum, PMCs, and vascular bundles. The TCP5 signal disappeared after meiosis, and no signal was observed in mature anthers. Interestingly, the TCP5-SRDX transgenic plants were also sterile, at least for the early-arising flowers, if not all of them. TCP5-SRDX expression also resulted in undersized anthers with fewer pollen sacs and pollen. However, the lignin accumulation in most of these anthers was comparable to that of the wild type, allowing these anthers to open. The qRT-PCR results revealed that several genes associated with secondary cell wall thickening had altered expression profiles in TCP5 overexpression transgenics, which supported the non-dehiscent anther phenotype. Furthermore, the expression levels of numerous critical anther genes were down-regulated in both TCP5 overexpression and TCP5-SRDX plants, indicating a comparable anther phenotype in these transgenic plants. These findings not only suggest that an appropriate TCP5 expression level is essential for anther development and plant fertility, but also improve our understanding of TCP transcription factor functioning in plant male reproduction and contribute information that may allow us to manipulate fertility and breeding in crops.
Collapse
Affiliation(s)
- Tingting Li
- College of Life Science, Shanxi University, Taiyuan 030006, China; (T.L.); (P.T.); (X.W.); (M.L.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Ping Tian
- College of Life Science, Shanxi University, Taiyuan 030006, China; (T.L.); (P.T.); (X.W.); (M.L.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Xinxin Wang
- College of Life Science, Shanxi University, Taiyuan 030006, China; (T.L.); (P.T.); (X.W.); (M.L.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Mengyao Li
- College of Life Science, Shanxi University, Taiyuan 030006, China; (T.L.); (P.T.); (X.W.); (M.L.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Shuping Xing
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan 030600, China
| |
Collapse
|
4
|
Yu L, Ma X, Dai M, Chang Y, Wang N, Zhang J, Zhang M, Yao N, Umar AW, Liu X. Unraveling TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR Transcription Factors in Safflower: A Blueprint for Stress Resilience and Metabolic Regulation. Molecules 2025; 30:254. [PMID: 39860123 PMCID: PMC11767934 DOI: 10.3390/molecules30020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Safflower (Carthamus tinctorius L.), a versatile medicinal and economic crop, harbors untapped genetic resources essential for stress resilience and metabolic regulation. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors, exclusive to plants, are pivotal in orchestrating growth, development, and stress responses, yet their roles in safflower remain unexplored. Here, we report the comprehensive identification and characterization of 26 safflower TCP genes (CtTCPs), categorized into Class I (PROLIFERATING CELL FACTOR, PCF) and Class II (CINCINNATA and TEOSINTE BRANCHED1/CYCLOIDEA, CIN and CYC/TB1) subfamilies. Comparative phylogenetics, conserved motif, and gene structure analyses revealed a high degree of evolutionary conservation and functional divergence within the gene family. Promoter analyses uncovered light-, hormone-, and stress-responsive cis-elements, underscoring their regulatory potential. Functional insights from qRT-PCR analyses demonstrated dynamic CtTCP expression under abiotic stresses, including abscisic acid (ABA), Methyl Jasmonate (MeJA), Cold, and ultraviolet radiation b (UV-B) treatments. Notably, ABA stress triggered a significant increase in flavonoid accumulation, correlated with the upregulation of key flavonoid biosynthesis genes and select CtTCPs. These findings illuminate the complex regulatory networks underlying safflower's abiotic stress responses and secondary metabolism, offering a molecular framework to enhance crop resilience and metabolic engineering for sustainable agriculture.
Collapse
Affiliation(s)
- Lili Yu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Xintong Ma
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
- Institute for Safflower Industry Research of Shihezi University/Pharmacy College of Shihezi University/Key Laborataty of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832003, China
| | - Mingran Dai
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Yue Chang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Nan Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Jian Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
- Institute for Safflower Industry Research of Shihezi University/Pharmacy College of Shihezi University/Key Laborataty of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832003, China
| | - Min Zhang
- Monitoring and Testing Center for Ginseng and Antler Products, Ministry of Agriculture and Rural Affairs, Jilin Agriculture University, Changchun 130118, China;
| | - Na Yao
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai 519087, China
| | - Xiuming Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
- Institute for Safflower Industry Research of Shihezi University/Pharmacy College of Shihezi University/Key Laborataty of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832003, China
| |
Collapse
|
5
|
Wang Y, Cao Y, Qin G. Multifaceted roles of TCP transcription factors in fate determination. THE NEW PHYTOLOGIST 2025; 245:95-101. [PMID: 39434425 DOI: 10.1111/nph.20188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Fate determination is indispensable for the accurate shaping and specialization of plant organs, a process critical to the structural and functional diversity in plant kingdom. The TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) family of transcription factors has been recognized for its significant contributions to plant organogenesis and morphogenesis. Recent research has shed light on the pivotal roles that TCPs play in fate determination. In this review, we delve into the current understanding of TCP functions, emphasizing their critical influence on fate determination from the organelle to the cell and organ levels. We also consolidate the molecular mechanisms through which TCPs exert their regulatory effects on fate determination. Additionally, we highlight intriguing points of TCPs that warrant further exploration in future research endeavors.
Collapse
Affiliation(s)
- Yutao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu Cao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
6
|
Ro N, Oh H, Ko HC, Yi J, Na YW, Haile M. Exploring Genomic Regions Associated with Fruit Traits in Pepper: Insights from Multiple GWAS Models. Int J Mol Sci 2024; 25:11836. [PMID: 39519386 PMCID: PMC11546569 DOI: 10.3390/ijms252111836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
This study utilized 303 pepper accessions from diverse Capsicum species to explore fruit traits, including length, width, wall thickness, and weight. Descriptive statistics revealed a mean fruit length of 66.19 mm, width of 23.48 mm, wall thickness of 1.89 mm, and weight of 15.29 g, with significant variability, particularly in fruit weight. Correlation analysis demonstrated strong positive relationships between fruit width, weight, and fruit wall thickness (r = 0.89 and r = 0.86, respectively), while fruit length showed weaker correlations with these traits. Analysis of fruit positions revealed that the majority of accessions had a pendent fruit position (156), followed by erect (85) and intermediate (8). In terms of fruit shape, triangular and narrow triangular shapes were the most common, observed in 102 and 98 accessions, respectively. Genome-wide association studies (GWAS) identified significant single nucleotide polymorphisms (SNPs) associated with fruit traits across four models (Blink, FarmCPU, MLM, MLMM). The number of significantly associated SNPs were as follows: fruit length (89), fruit width (55), fruit weight (63), fruit wall thickness (48), fruit shape (151), and fruit position (51). Several genes were also identified where the SNPs are located or adjacent to, providing candidate genes for further exploration of the genetic basis of fruit morphology. Notably, genes such as E3 ubiquitin-protein ligase RGLG1 (associated with fruit width), Homeobox-leucine zipper protein HDG11 (involved in fruit width), Auxin response factor 23 (linked to fruit shape), and ATP-dependent zinc metalloprotease FtsH (related to fruit weight) were identified. These findings enhance our understanding of the genetic basis of fruit morphology in Capsicum, offering valuable insights for breeding and agricultural practices.
Collapse
Affiliation(s)
- Nayoung Ro
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (H.O.); (H.-C.K.); (J.Y.); (Y.-W.N.)
| | | | | | | | | | - Mesfin Haile
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (H.O.); (H.-C.K.); (J.Y.); (Y.-W.N.)
| |
Collapse
|
7
|
Gastaldi V, Nicolas M, Muñoz-Gasca A, Cubas P, Gonzalez DH, Lucero L. Class I TCP transcription factors TCP14 and TCP15 promote axillary branching in Arabidopsis by counteracting the action of Class II TCP BRANCHED1. THE NEW PHYTOLOGIST 2024; 243:1810-1822. [PMID: 38970467 DOI: 10.1111/nph.19950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
Shoot branching is determined by a balance between factors that promote axillary bud dormancy and factors that release buds from the quiescent state. The TCP family of transcription factors is classified into two classes, Class I and Class II, which usually play different roles. While the role of the Class II TCP BRANCHED1 (BRC1) in suppressing axillary bud development in Arabidopsis thaliana has been widely explored, the function of Class I TCPs in this process remains unknown. We analyzed the role of Class I TCP14 and TCP15 in axillary branch development in Arabidopsis through a series of genetic and molecular studies. In contrast to the increased branch number shown by brc1 mutants, tcp14 tcp15 plants exhibit a reduced number of branches compared with wild-type. Our findings provide evidence that TCP14 and TCP15 act by counteracting BRC1 function through two distinct mechanisms. First, they indirectly reduce BRC1 expression levels. Additionally, TCP15 directly interacts with BRC1 decoying it from chromatin and thereby preventing the transcriptional activation of a set of BRC1-dependent genes. We describe a molecular mechanism by which Class I TCPs physically antagonize the action of the Class II TCP BRC1, aligning with their opposite roles in axillary bud development.
Collapse
Affiliation(s)
- Victoria Gastaldi
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Michael Nicolas
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Aitor Muñoz-Gasca
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Pilar Cubas
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Leandro Lucero
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| |
Collapse
|
8
|
Colleoni PE, van Es SW, Winkelmolen T, Immink RGH, van Esse GW. Flowering time genes branching out. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4195-4209. [PMID: 38470076 PMCID: PMC11263490 DOI: 10.1093/jxb/erae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Plants are sessile by nature, and as such they have evolved to sense changes in seasonality and their surrounding environment, and adapt to these changes. One prime example of this is the regulation of flowering time in angiosperms, which is precisely timed by the coordinated action of two proteins: FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). Both of these regulators are members of the PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN (PEBP) family of proteins. These regulatory proteins do not interact with DNA themselves, but instead interact with transcriptional regulators, such as FLOWERING LOCUS D (FD). FT and TFL1 were initially identified as key regulators of flowering time, acting through binding with FD; however, PEBP family members are also involved in shaping plant architecture and development. In addition, PEBPs can interact with TCP transcriptional regulators, such as TEOSINTE BRANCHED 1 (TB1), a well-known regulator of plant architecture, and key domestication-related genes in many crops. Here, we review the role of PEBPs in flowering time, plant architecture, and development. As these are also key yield-related traits, we highlight examples from the model plant Arabidopsis as well as important food and feed crops such as, rice, barley, wheat, tomato, and potato.
Collapse
Affiliation(s)
- Pierangela E Colleoni
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Sam W van Es
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Ton Winkelmolen
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - G Wilma van Esse
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
9
|
Liu Z, Shi X, Wang Z, Qu M, Gao C, Wang C, Wang Y. Acetylation of transcription factor BpTCP20 by acetyltransferase BpPDCE23 modulates salt tolerance in birch. PLANT PHYSIOLOGY 2024; 195:2354-2371. [PMID: 38501602 DOI: 10.1093/plphys/kiae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
Teosinte branched 1/Cycloidea/Proliferating cell factor (TCP) transcription factors function in abiotic stress responses. However, how TCPs confer salt tolerance is unclear. Here, we characterized a TCP transcription factor, BpTCP20, that responds to salt stress in birch (Betula platyphylla Suk). Plants overexpressing BpTCP20 displayed increased salt tolerance, and Bptcp20 knockout mutants displayed reduced salt tolerance relative to the wild-type (WT) birch. BpTCP20 conferred salt tolerance by mediating stomatal closure and reducing reactive oxygen species (ROS) accumulation. Chromatin immunoprecipitation sequencing showed that BpTCP20 binds to NeuroD1, T-box, and two unknown elements (termed TBS1 and TBS2) to regulate target genes. In birch, salt stress led to acetylation of BpTCP20 acetylation at lysine 259. A mutated BpTCP20 variant (abolished for acetylation, termed BpTCP20259) was overexpressed in birch, which led to decreased salt tolerance compared with plants overexpressing BpTCP20. However, BpTCP20259-overexpressing plants still displayed increased salt tolerance relative to untransformed WT plants. BpTCP20259 showed reduced binding to the promoters of target genes and decreased target gene activation, leading to decreased salt tolerance. In addition, we identified dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex (BpPDCE23), an acetyltransferase that interacts with and acetylates BpTCP20 to enhance its binding to DNA motifs. Together, these results suggest that BpTCP20 is a transcriptional regulator of salt tolerance, whose activity is modulated by BpPDCE23-mediated acetylation.
Collapse
Affiliation(s)
- Zhujun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xinxin Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ming Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
10
|
Gao Y, Regad F, Li Z, Pirrello J, Bouzayen M, Van Der Rest B. Class I TCP in fruit development: much more than growth. FRONTIERS IN PLANT SCIENCE 2024; 15:1411341. [PMID: 38863555 PMCID: PMC11165105 DOI: 10.3389/fpls.2024.1411341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Fruit development can be viewed as the succession of three main steps consisting of the fruit initiation, growth and ripening. These processes are orchestrated by different factors, notably the successful fertilization of flowers, the environmental conditions and the hormones whose action is coordinated by a large variety of transcription factors. Among the different transcription factor families, TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR (TCP) family has received little attention in the frame of fruit biology despite its large effects on several developmental processes and its action as modulator of different hormonal pathways. In this respect, the comprehension of TCP functions in fruit development remains an incomplete puzzle that needs to be assembled. Building on the abundance of genomic and transcriptomic data, this review aims at collecting available TCP expression data to allow their integration in the light of the different functional genetic studies reported so far. This reveals that several Class I TCP genes, already known for their involvement in the cell proliferation and growth, display significant expression levels in developing fruit, although clear evidence supporting their functional significance in this process remains scarce. The extensive expression data compiled in our study provide convincing elements that shed light on the specific involvement of Class I TCP genes in fruit ripening, once these reproductive organs acquire their mature size. They also emphasize their putative role in the control of specific biological processes such as fruit metabolism and hormonal dialogue.
Collapse
Affiliation(s)
- Yushuo Gao
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Farid Regad
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Benoît Van Der Rest
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| |
Collapse
|
11
|
Liu S, An Z, Lai Z. Amaranth's Growth and Physiological Responses to Salt Stress and the Functional Analysis of AtrTCP1 Gene. Int J Mol Sci 2024; 25:5437. [PMID: 38791475 PMCID: PMC11121779 DOI: 10.3390/ijms25105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Amaranth species are C4 plants that are rich in betalains, and they are tolerant to salinity stress. A small family of plant-specific TCP transcription factors are involved in the response to salt stress. However, it has not been investigated whether amaranth TCP1 is involved in salt stress. We elucidated that the growth and physiology of amaranth were affected by salt concentrations of 50-200 mmol·L-1 NaCl. The data showed that shoot and root growth was inhibited at 200 mmol·L-1, while it was promoted at 50 mmol·L-1. Meanwhile, the plants also showed physiological responses, which indicated salt-induced injuries and adaptation to the salt stress. Moreover, AtrTCP1 promoted Arabidopsis seed germination. The germination rate of wild-type (WT) and 35S::AtrTCP1-GUS Arabidopsis seeds reached around 92% by the seventh day and 94.5% by the second day under normal conditions, respectively. With 150 mmol·L-1 NaCl treatment, the germination rate of the WT and 35S::AtrTCP1-GUS plant seeds was 27.0% by the seventh day and 93.0% by the fourth day, respectively. Under salt stress, the transformed 35S::AtrTCP1 plants bloomed when they grew 21.8 leaves after 16.2 days of treatment, which was earlier than the WT plants. The transformed Arabidopsis plants flowered early to resist salt stress. These results reveal amaranth's growth and physiological responses to salt stress, and provide valuable information on the AtrTCP1 gene.
Collapse
Affiliation(s)
- Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixian An
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
12
|
Zhang L, Wang P, Wang M, Xu X, Jia H, Wu T, Yuan S, Jiang B, Sun S, Han T, Wang L, Chen F. GmTCP40 Promotes Soybean Flowering under Long-Day Conditions by Binding to the GmAP1a Promoter and Upregulating Its Expression. Biomolecules 2024; 14:465. [PMID: 38672481 PMCID: PMC11047976 DOI: 10.3390/biom14040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Soybean [Glycine max (L.) Merr.] is a short-day (SD) plant that is sensitive to photoperiod, which influences flowering, maturity, and even adaptation. TEOSINTE-BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors have been shown to regulate photoperiodic flowering. However, the roles of TCPs in SD plants such as soybean, rice, and maize remain largely unknown. In this study, we cloned the GmTCP40 gene from soybean and investigated its expression pattern and function. Compared with wild-type (WT) plants, GmTCP40-overexpression plants flowered earlier under long-day (LD) conditions but not under SD conditions. Consistent with this, the overexpression lines showed upregulation of the flowering-related genes GmFT2a, GmFT2b, GmFT5a, GmFT6, GmAP1a, GmAP1b, GmAP1c, GmSOC1a, GmSOC1b, GmFULa, and GmAG under LD conditions. Further investigation revealed that GmTCP40 binds to the GmAP1a promoter and promotes its expression. Analysis of the GmTCP40 haplotypes and phenotypes of soybean accessions demonstrated that one GmTCP40 haplotype (Hap6) may contribute to delayed flowering at low latitudes. Taken together, our findings provide preliminary insights into the regulation of flowering time by GmTCP40 while laying a foundation for future research on other members of the GmTCP family and for efforts to enhance soybean adaptability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Liwei Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (L.Z.); (P.W.); (M.W.); (X.X.); (H.J.); (T.W.); (S.Y.); (B.J.); (S.S.); (T.H.)
| | - Fulu Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (L.Z.); (P.W.); (M.W.); (X.X.); (H.J.); (T.W.); (S.Y.); (B.J.); (S.S.); (T.H.)
| |
Collapse
|
13
|
Feng S, Li N, Chen H, Liu Z, Li C, Zhou R, Zhang Y, Cao R, Ma X, Song X. Large-scale analysis of the ARF and Aux/IAA gene families in 406 horticultural and other plants. MOLECULAR HORTICULTURE 2024; 4:13. [PMID: 38589963 PMCID: PMC11003162 DOI: 10.1186/s43897-024-00090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/03/2024] [Indexed: 04/10/2024]
Abstract
The auxin response factor (ARF) and auxin/indole-3-acetic acid (Aux/IAA) family of genes are central components of the auxin signaling pathway and play essential roles in plant growth and development. Their large-scale analysis and evolutionary trajectory of origin are currently not known. Here, we identified the corresponding ARF and Aux/IAA family members and performed a large-scale analysis by scanning 406 plant genomes. The results showed that the ARF and Aux/IAA gene families originated from charophytes. The ARF family sequences were more conserved than the Aux/IAA family sequences. Dispersed duplications were the common expansion mode of ARF and Aux/IAA families in bryophytes, ferns, and gymnosperms; however, whole-genome duplication was the common expansion mode of the ARF and Aux/IAA families in basal angiosperms, magnoliids, monocots, and dicots. Expression and regulatory network analyses revealed that the Arabidopsis thaliana ARF and Aux/IAA families responded to multiple hormone, biotic, and abiotic stresses. The APETALA2 and serum response factor-transcription factor gene families were commonly enriched in the upstream and downstream genes of the ARF and Aux/IAA gene families. Our study provides a comprehensive overview of the evolutionary trajectories, structural functions, expansion mechanisms, expression patterns, and regulatory networks of these two gene families.
Collapse
Affiliation(s)
- Shuyan Feng
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Nan Li
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Huilong Chen
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhuo Liu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Chunjin Li
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, Aarhus, 8200, Denmark
| | - Yingchao Zhang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Rui Cao
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| | - Xiao Ma
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
- College of Horticultural Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066600, China.
| | - Xiaoming Song
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| |
Collapse
|
14
|
Pan J, Ju Z, Ma X, Duan L, Jia Z. Genome-wide characterization of TCP family and their potential roles in abiotic stress resistance of oat ( Avena sativa L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1382790. [PMID: 38654900 PMCID: PMC11036127 DOI: 10.3389/fpls.2024.1382790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
The TCP gene family members play multiple functions in plant growth and development and were named after the first three family members found in this family, TB1 (TEOSINTE BRANCHED 1), CYCLOIDEA (CYC), and Proliferating Cell Factor 1/2 (PCF1/2). Nitrogen (N) is a crucial element for forage yield; however, over-application of N fertilizer can increase agricultural production costs and environmental stress. Therefore, the discovery of low N tolerance genes is essential for the genetic improvement of superior oat germplasm and ecological protection. Oat (Avena sativa L.), is one of the world's staple grass forages, but no genome-wide analysis of TCP genes and their roles in low-nitrogen stress has been performed. This study identified the oat TCP gene family members using bioinformatics techniques. It analyzed their phylogeny, gene structure analysis, and expression patterns. The results showed that the AsTCP gene family includes 49 members, and most of the AsTCP-encoded proteins are neutral or acidic proteins; the phylogenetic tree classified the AsTCP gene family members into three subfamilies, and each subfamily has different conserved structural domains and functions. In addition, multiple cis-acting elements were detected in the promoter of the AsTCP genes, which were associated with abiotic stress, light response, and hormone response. The 49 AsTCP genes identified from oat were unevenly distributed on 18 oat chromosomes. The results of real-time quantitative polymerase chain reaction (qRT-PCR) showed that the AsTCP genes had different expression levels in various tissues under low nitrogen stress, which indicated that these genes (such as AsTCP01, AsTCP03, AsTCP22, and AsTCP38) played multiple roles in the growth and development of oat. In conclusion, this study analyzed the AsTCP gene family and their potential functions in low nitrogen stress at the genome-wide level, which lays a foundation for further analysis of the functions of AsTCP genes in oat and provides a theoretical basis for the exploration of excellent stress tolerance genes in oat. This study provides an essential basis for future in-depth studies of the TCP gene family in other oat genera and reveals new research ideas to improve gene utilization.
Collapse
Affiliation(s)
| | | | | | | | - Zhifeng Jia
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
| |
Collapse
|
15
|
Usai G, Fambrini M, Pugliesi C, Simoni S. Exploring the patterns of evolution: Core thoughts and focus on the saltational model. Biosystems 2024; 238:105181. [PMID: 38479653 DOI: 10.1016/j.biosystems.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
The Modern Synthesis, a pillar in biological thought, united Darwin's species origin concepts with Mendel's laws of character heredity, providing a comprehensive understanding of evolution within species. Highlighting phenotypic variation and natural selection, it elucidated the environment's role as a selective force, shaping populations over time. This framework integrated additional mechanisms, including genetic drift, random mutations, and gene flow, predicting their cumulative effects on microevolution and the emergence of new species. Beyond the Modern Synthesis, the Extended Evolutionary Synthesis expands perspectives by recognizing the role of developmental plasticity, non-genetic inheritance, and epigenetics. We suggest that these aspects coexist in the plant evolutionary process; in this context, we focus on the saltational model, emphasizing how saltation events, such as dichotomous saltation, chromosomal mutations, epigenetic phenomena, and polyploidy, contribute to rapid evolutionary changes. The saltational model proposes that certain evolutionary changes, such as the rise of new species, may result suddenly from single macromutations rather than from gradual changes in DNA sequences and allele frequencies within a species over time. These events, observed in domesticated and wild higher plants, provide well-defined mechanistic bases, revealing their profound impact on plant diversity and rapid evolutionary events. Notably, next-generation sequencing exposes the likely crucial role of allopolyploidy and autopolyploidy (saltational events) in generating new plant species, each characterized by distinct chromosomal complements. In conclusion, through this review, we offer a thorough exploration of the ongoing dissertation on the saltational model, elucidating its implications for our understanding of plant evolutionary processes and paving the way for continued research in this intriguing field.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Samuel Simoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
16
|
Zhang T, Elomaa P. Development and evolution of the Asteraceae capitulum. THE NEW PHYTOLOGIST 2024; 242:33-48. [PMID: 38361269 DOI: 10.1111/nph.19590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/28/2024] [Indexed: 02/17/2024]
Abstract
Asteraceae represent one of the largest and most diverse families of plants. The evolutionary success of this family has largely been contributed to their unique inflorescences, capitula that mimic solitary flowers but are typically aggregates of multiple florets. Here, we summarize the recent molecular and genetic level studies that have promoted our understanding of the development and evolution of capitula. We focus on new results on patterning of the enlarged meristem resulting in the iconic phyllotactic arrangement of florets in Fibonacci numbers of spirals. We also summarize the current understanding of the genetic networks regulating the characteristic reproductive traits in the family such as floral dimorphism and differentiation of highly specialized floral organs. So far, developmental studies in Asteraceae are still limited to a very narrow selection of model species. Along with the recent advancements in genomics and phylogenomics, Asteraceae and its relatives provide an outstanding model clade for extended evo-devo studies to exploit the morphological diversity and the underlying molecular networks and to translate this knowledge to the breeding of the key crops in the family.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, 00014, Helsinki, Finland
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, 00014, Helsinki, Finland
| |
Collapse
|