1
|
Li L, Li J, Wang S, Dong Y. Dual-mode CRISPR/Cas12a-assisted fluorescent and lateral flow aptasensor based on a newly truncated aptamer for Fumonisin B1 detection. Int J Biol Macromol 2025; 298:139950. [PMID: 39824412 DOI: 10.1016/j.ijbiomac.2025.139950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
As a Group 2B carcinogen, accurate and efficient detection for Fumonisin B1 (FB1) is essential. The emergence of aptamers presents a viable solution to meet this demand. In this study, a truncated aptamer named Apt40 was developed, showcasing remarkable binding affinity to FB1. In recent years, the role of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) and CRISPR-associated 12a protein (Cas12a) in detection became increasingly significant, especially utilizing the trans-cleavage of Cas12a/CRISPR RNA (crRNA) complex. To further evaluate the applicability of the Apt40, a dual-mode CRISPR/Cas12a-assisted fluorescent and lateral flow aptasensor was constructed. Notably, the crRNA was designed to complementarily bind with Apt40 in its active binding sites, thus activating the trans-cleavage of Cas12a/crRNA to signal probes. Consequently, the fluorescent aptasensor exhibited a linear range of 10-1500 ng/mL with a Limit of Detection (LOD) of 0.802 ng/mL, while the lateral flow aptasensor showed a 200-3000 ng/mL linear range with a 9.031 ng/mL LOD. Both aptasensors provided high recoveries (95.11 %-106.63 %) in corn oil and starch samples, underscoring their precisions. We anticipate that this systematic strategy, from optimizing aptamer's performance to developing a novel dual-mode aptasensor, can provide a universal framework and valuable insights for the detection of other target molecules.
Collapse
Affiliation(s)
- Ling Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jiaru Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
2
|
Bencsik T, Balázs O, Vida RG, Zsidó BZ, Hetényi C, Valentová K, Poór M. Effects of catechins, resveratrol, silymarin components and some of their conjugates on xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2765-2776. [PMID: 39606799 PMCID: PMC11909324 DOI: 10.1002/jsfa.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Over the past two decades, the global incidence of gout has markedly increased, affecting people worldwide. Considering the side effects of xanthine oxidase (XO) inhibitor drugs (e.g. allopurinol and febuxostat) used in the treatment of hyperuricemia and gout, the potential application of phytochemicals has been widely studied. In addition, XO also takes part in the elimination of certain drugs, including 6-mercaptopurine. In the current explorative study, we aimed to examine the potential effects of tea catechins, resveratrol, silymarin flavonolignans and some of their conjugated metabolites on XO-catalyzed xanthine and 6-mercaptopurine oxidation, applying in vitro assays and modeling studies. RESULTS Catechins, resveratrol and resveratrol conjugates exerted no or only weak inhibitory effects on XO. Silybin A, silybin B and isosilybin A were weak, silychristin was a moderate, while 2,3-dehydrosilychristin was a potent inhibitor of the enzyme. Sulfate metabolites of silybin A, silybin B and isosilybin A were considerably stronger inhibitors compared to the parent flavonolignans, and the sulfation of 2,3-dehydrosilychristin slightly increased its inhibitory potency. Silychristin was the sole flavonolignan tested, where sulfate conjugation decreased its inhibitory effect. CONCLUSION 2,3-Dehydrosilychristin seems to be a promising candidate for examining its in vivo antihyperuricemic effects, because both the parent compound and its sulfate conjugate are highly potent inhibitors of XO. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tímea Bencsik
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Orsolya Balázs
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Róbert G Vida
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Balázs Z Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miklós Poór
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Molecular Medicine Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
3
|
Paulk RT, Abbas HK, Rojas MG, Morales-Ramos JA, Busman M, Little N, Shier WT. Evaluating Tenebrio molitor (Coleoptera: Tenebrionidae) for the reduction of fumonisin B1 levels in livestock feed. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:63-70. [PMID: 39574335 DOI: 10.1093/jee/toae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 02/14/2025]
Abstract
The yellow mealworm, Tenebrio molitor, L., can be an important component of the circular economy because of its ability to transform a variety of agricultural wastes and byproducts into valuable livestock feed. Analysis of their ability to endure toxins coupled with their potential to transfer contaminants to higher trophic levels is not complete. Fumonisins, produced primarily by Fusarium verticillioides (Hypocreales: Netriaceae) (Sacc.) Nirenberg (1976), are mycotoxins likely to be encountered by T. molitor in corn and other grain byproducts. Tenebrio molitor larvae were reared on a simulated diet of corn and other grain byproducts treated with a range of maximum recommended fumonisin B1 levels for different livestock feeds. We observed that T. molitor were able to survive, grow, and reduce by excretion and metabolism their retained fumonisin B1 levels by up to 99.7% compared to the diet they consumed. Unknown metabolic processes were inferred from the significantly reduced content of fumonisin B1 in the frass (63.1% to 73.2%) as compared to the diet and by the first report of long-chain acylated fumonisin B1 derivatives in insect frass.
Collapse
Affiliation(s)
- Ryan T Paulk
- Biological Control of Pests Research Unit, USDA, Agricultural Research Service, Stoneville, MS, USA
| | - Hamed K Abbas
- Biological Control of Pests Research Unit, USDA, Agricultural Research Service, Stoneville, MS, USA
| | - M Guadalupe Rojas
- Biological Control of Pests Research Unit, USDA, Agricultural Research Service, Stoneville, MS, USA
| | - Juan A Morales-Ramos
- Biological Control of Pests Research Unit, USDA, Agricultural Research Service, Stoneville, MS, USA
| | - Mark Busman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, USDA, Agricultural Research Service, Peoria, IL, USA
| | - Nathan Little
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS, USA
| | - W Thomas Shier
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Brückner L, Cramer B, Humpf HU. Reactions of citrinin with amino compounds modelling thermal food processing. Mycotoxin Res 2024; 40:709-720. [PMID: 39298071 PMCID: PMC11480111 DOI: 10.1007/s12550-024-00557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
Citrinin (CIT) is a nephrotoxic mycotoxin, produced by several species of Penicillium, Aspergillus, and Monascus. The foodstuffs most frequently contaminated with CIT include cereals, cereal products, and red yeast rice. Studies on the occurrence of CIT in food have shown that the CIT concentrations in processed cereal-based products are generally lower than in unprocessed industry cereal samples. One possible explanation is the reaction of CIT with major food components such as carbohydrates or proteins to form modified CIT. Such modified forms of CIT are then hidden from conventional analyses, but it is possible that they are converted back into the parent mycotoxin during digestion. The aim of this study is therefore to investigate reactions of CIT with food matrix during thermal processes and to gain a deeper understanding of the degradation of CIT during food processing. In this study, we could demonstrate that CIT reacts with amino compounds such as proteins, under typical food processing conditions, leading to modified forms of CIT.
Collapse
Affiliation(s)
- Lea Brückner
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Münster, Germany.
| |
Collapse
|
5
|
Ali O, Szabó A. Fumonisin distorts the cellular membrane lipid profile: A mechanistic insight. Toxicology 2024; 506:153860. [PMID: 38871209 DOI: 10.1016/j.tox.2024.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Monitoring modifications in membrane lipids in association with external stimuli/agents, including fumonisins (FUMs), is a widely employed approach to assess cellular metabolic response/status. FUMs are prevalent fusariotoxins worldwide that have diverse structures with varying toxicity across species; nevertheless, they can induce metabolic disturbances and disease, including cancer. The capacity of FUMs to disrupt membrane lipids, demonstrated across numerous species and organs/tissues, is ascribed to a multitude of factors/events, which range from direct to indirect effects. Certain events are well established, whereas the potential consequences of others remain speculative. The most notable effect is their resemblance to sphingoid bases, which impacts the synthesis of ceramides leading to numerous changes in lipids' composition that are not limited to sphingolipids' composition of the membranes. The next plausible scenario involves the induction of oxidative stress, which is considered an indirect/secondary effect of FUMs. Additional modes of action include modifications of enzyme activities and nuclear signals related to lipid metabolism, although these are likely not yet fully comprehended. This review provides in-depth insight into the current state of these events and their potential mechanistic actions in modifying membrane lipids, with a focus on long-chain fatty acids. This paper also presents a detailed description of the reported modifications to membrane lipids by FUMs.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary.
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| |
Collapse
|
6
|
Kaszab E, Jiang D, Szabó I, Kriszt B, Urbányi B, Szoboszlay S, Sebők R, Bock I, Csenki-Bakos Z. Evaluating the In Vivo Virulence of Environmental Pseudomonas aeruginosa Using Microinjection Model of Zebrafish ( Danio rerio). Antibiotics (Basel) 2023; 12:1740. [PMID: 38136774 PMCID: PMC10740789 DOI: 10.3390/antibiotics12121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Microinjection of zebrafish (Danio rerio) embryos offers a promising model for studying the virulence and potential environmental risks associated with Pseudomonas aeruginosa. (2) Methods: This work aimed to develop a P. aeruginosa infection model using two parallel exposition pathways on zebrafish larvae with microinjection into the yolk and the perivitelline space to simultaneously detect the invasive and cytotoxic features of the examined strains. The microinjection infection model was validated with 15 environmental and clinical strains of P. aeruginosa of various origins, antibiotic resistance profiles, genotypes and phenotypes: both exposition pathways were optimized with a series of bacterial dilutions, different drop sizes (injection volumes) and incubation periods. Besides mortality, sublethal symptoms of the treated embryos were detected and analyzed. (3) Results: According to the statistical evaluation of our results, the optimal parameters (dilution, drop size and incubation period) were determined. (4) Conclusions: The tested zebrafish embryo microinjection infection model is now ready for use to determine the in vivo virulence and ecological risk of environmental P. aeruginosa.
Collapse
Affiliation(s)
- Edit Kaszab
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (E.K.); (D.J.); (S.S.); (R.S.)
| | - Dongze Jiang
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (E.K.); (D.J.); (S.S.); (R.S.)
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (I.S.); (I.B.); (Z.C.-B.)
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (E.K.); (D.J.); (S.S.); (R.S.)
| | - Béla Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Sándor Szoboszlay
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (E.K.); (D.J.); (S.S.); (R.S.)
| | - Rózsa Sebők
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (E.K.); (D.J.); (S.S.); (R.S.)
| | - Illés Bock
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (I.S.); (I.B.); (Z.C.-B.)
| | - Zsolt Csenki-Bakos
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (I.S.); (I.B.); (Z.C.-B.)
| |
Collapse
|
7
|
Ruan ML, Wang J, Xia ZY, Li XW, Zhang B, Wang GL, Wu YY, Han Y, Deng J, Sun LH. An integrated mycotoxin-mitigating agent can effectively mitigate the combined toxicity of AFB 1, DON and OTA on the production performance, liver and oviduct health in broiler breeder hens. Food Chem Toxicol 2023; 182:114159. [PMID: 37913901 DOI: 10.1016/j.fct.2023.114159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
This study was to evaluate the efficacy of an integrated mycotoxin-mitigating agent in reducing the adverse effects of co-occurring dietary aflatoxin B1 deoxynivalenol and ochratoxin A on broiler breeder hens. 360 30-week-old Hubbard Efficiency Plus broiler breeder hens were allocated into four groups and received a basal diet (BD; Control), BD added 0.15 mg/kg aflatoxin B1+1.5 mg/kg deoxynivalenol+0.12 mg/kg ochratoxin A (Toxins), BD plus Toxins with 0.1% TOXO-XL (Toxins + XL1), and BD plus Toxins with 0.2% TOXO-XL (Toxins + XL2), respectively, for 8 weeks, and then received the same BD for another 4 weeks. Compared with control, mycotoxins decreased total egg weigh, egg laying rate, settable eggs rate, hatch of total eggs rate, egg quality, but increased feed/egg ratio and mortality rate, and impaired the liver and oviduct health during weeks 1-8 and(or) 9-12. It also increased PC and MDA concentrations, TUNEL-positive cells and IL-1β and IL-6 expression, and decreased T-AOC, GPX and CAT activities in liver and/or oviduct. Notably, most of these negative changes were mitigated by both dosages of TOXO-XL. Generally, 0.2% TOXO-XL displayed better mitigation effects than 0.1% TOXO-XL. Conclusively, these findings revealed that TOXO-XL could mitigate the combined mycotoxins-induced toxicity on the performance, liver and oviduct health, through the regulation of redox, immunity, and apoptosis in broiler breeder hens.
Collapse
Affiliation(s)
- Meng-Ling Ruan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jie Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhi-Yuan Xia
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xue-Wu Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Newhope Liuhe Co. Ltd., Beijing, 100102, China
| | - Bo Zhang
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Guan-Lin Wang
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Yuan-Yuan Wu
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Yanming Han
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Jiang Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
8
|
Balázs O, Dombi Á, Zsidó BZ, Hetényi C, Valentová K, Vida RG, Poór M. Inhibition of xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation by luteolin, naringenin, myricetin, ampelopsin and their conjugated metabolites. Biomed Pharmacother 2023; 167:115548. [PMID: 37734263 DOI: 10.1016/j.biopha.2023.115548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Luteolin, naringenin, myricetin, and ampelopsin are abundant flavonoids in nature, and several dietary supplements also contain them at very high doses. After the peroral intake, flavonoids go through extensive presystemic biotransformation; therefore, typically their sulfate/glucuronic acid conjugates reach high concentrations in the circulation. Xanthine oxidase (XO) enzyme is involved in uric acid production, and it also takes part in the elimination of certain drugs (e.g., 6-mercaptopurine). The inhibitory effects of flavonoid aglycones on XO have been widely studied; however, only limited data are available regarding their sulfate and glucuronic acid conjugates. In this study, we examined the impacts of luteolin, naringenin, myricetin, ampelopsin, and their sulfate/glucuronide derivatives on XO-catalyzed xanthine and 6-mercaptopurine oxidations employing in vitro enzyme incubation assays and molecular modeling studies. Our major results/conclusions are the following: (1) Sulfate metabolites were stronger while glucuronic acid derivatives were weaker inhibitors of XO compared to the parent flavonoids. (2) Naringenin, ampelopsin, and their metabolites were weak inhibitors of the enzyme. (3) Luteolin, myricetin, and their sulfates were highly potent inhibitors of XO, and the glucuronides of luteolin showed moderate inhibitory impacts. (4) Conjugated metabolites of luteolin and myricetin can be involved in the inhibitory effects of these flavonoids on XO enzyme.
Collapse
Affiliation(s)
- Orsolya Balázs
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Balázs Z Zsidó
- Unit of Pharmacoinformatics, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Csaba Hetényi
- Unit of Pharmacoinformatics, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00 Prague, Czech Republic
| | - Róbert G Vida
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary.
| |
Collapse
|