1
|
Imtiaz S, Ferdous UT, Nizela A, Hasan A, Shakoor A, Zia AW, Uddin S. Mechanistic study of cancer drug delivery: Current techniques, limitations, and future prospects. Eur J Med Chem 2025; 290:117535. [PMID: 40132495 DOI: 10.1016/j.ejmech.2025.117535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Cancer drug delivery remains a critical challenge with systemic toxicity, poor drug bioavailability, and a lack of effective targeting. Overcoming these barriers is essential for improving treatment efficacy and patient outcomes. This review discusses current drug delivery techniques that reshape cancer therapy by offering precise, controlled-release tailored to tumor-specific features. Innovations in nanotechnology, immunotherapy, and gene therapy enable interventions at molecular and cellular levels. Radiomics and pathomics integrate high-dimensional data to optimize diagnostics and treatment planning. Combination therapy addresses the complexities of tumor heterogeneity by synergizing multiple agents within a single therapeutic framework, while peptide-drug conjugates enhance specificity and potency. Hydrogel-based systems and microneedle arrays offer localized, sustained release, significantly improving therapeutic outcomes. However, clinical translation of these advancements faces significant barriers such as drug resistance, off-target effects, scalability, cost, and ethical concerns. Moreover, regulatory complexities and the economic feasibility of these therapies highlight the need for innovative frameworks to make them accessible globally. Therefore, there is a need for innovation in gene and cell therapy, next-generation drug delivery platforms, and personalized medicine. This review focuses on recent advancements in drug delivery techniques over the past decade, evaluating their limitations and exploring potential future directions for transforming cancer treatment.
Collapse
Affiliation(s)
- Saiqa Imtiaz
- Department of Bioengineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Umme Tamanna Ferdous
- Center for Biosystems and Machines, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Alexis Nizela
- Department of Bioengineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia; Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, 2713, Qatar; Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Adnan Shakoor
- Center for Biosystems and Machines, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia; Department of Control & Instrumentation Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Abdul Wasy Zia
- Institute of Mechanical, Process, and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | - Shihab Uddin
- Department of Bioengineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia; Center for Biosystems and Machines, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
2
|
Xiao S, Chen L, Chen Z, Li Q. Therapeutically Harnessing Tumor Cell-Derived Extracellular Vesicles for Multiple Myeloma: Recent Advances and Future Perspectives. Pharmaceutics 2024; 16:1439. [PMID: 39598562 PMCID: PMC11597712 DOI: 10.3390/pharmaceutics16111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as pivotal regulators for extensive intercellular crosstalk owing to capsuled diverse bioactive substances such as proteins, nucleic acids, and lipids. Recent studies have shown that tumor-derived EVs significantly influence the bone marrow microenvironment, contributing to the progression of multiple myeloma (MM). This highlights the robust potential of EVs as a promising avenue for developing more effective and precise diagnostic and therapeutic strategies for MM. In this review, we briefly discuss the multifaceted roles of EVs in MM progression, as well as the diagnostic and therapeutic value in MM management. Specifically, we focus on the latest research progress regarding the therapeutic potential of EVs for MM, particularly tumor cell-derived EVs, as we elaborate on three main aspects: (i) EVs as therapeutic targets, including the targeted inhibition of EV biogenesis and uptake, and the possibility of eliminating tumor-derived EVs; (ii) EVs as delivery nanovectors, where we discuss the latest anti-MM candidates and potential ways to optimize therapeutic efficiency; and (iii) engineered EVs as antitumor vaccines, focusing on the use of tumor cell-derived EVs in immunotherapy. Finally, we address the prospects and challenges of harnessing the therapeutic potential of EVs in clinical transformation.
Collapse
Affiliation(s)
- Shumei Xiao
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Lei Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.C.); (Z.C.)
| | - Zhichao Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.C.); (Z.C.)
| | - Qiubai Li
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Hubei Engineering Research Center for Application of Extracellular Vesicles, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
3
|
Shafiei FS, Abroun S. Recent advancements in nanomedicine as a revolutionary approach to treating multiple myeloma. Life Sci 2024; 356:122989. [PMID: 39197575 DOI: 10.1016/j.lfs.2024.122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
Multiple myeloma, the second most common hematological malignancy, remains incurable with a 5-year survival rate of approximately 50 % and recurrence rates near 100 %, despite significant attempts to develop effective medicines. Therefore, there is a pressing demand in the medical field for innovative and more efficient treatments for MM. Currently, the standard approach for treating MM involves administering high-dose chemotherapy, which frequently correlates with improved results; however, one major limiting factor is the significant side effects of these medications. Furthermore, the strategies used to deliver medications to tumors limit their efficacy, whether by rapid clearance from circulation or an insufficient concentration in cancer cells. Cancer treatment has shifted from cytotoxic, nonspecific chemotherapy regimens to molecularly targeted, rationally developed drugs with improved efficacy and fewer side effects. Nanomedicines may provide an effective alternative way to avoid these limits by delivering drugs into the complicated bone marrow microenvironment and efficiently reaching myeloma cells. Putting drugs into nanoparticles can make their pharmacokinetic and pharmacodynamic profiles much better. This can increase the drug's effectiveness in tumors, extend its time in circulation in the blood, and lower its off-target toxicity. In this review, we introduce several criteria for the rational design of nanomedicine to achieve the best anti-tumoral therapeutic results. Next, we discuss recent advances in nanomedicine for MM therapy.
Collapse
Affiliation(s)
- Fatemeh Sadat Shafiei
- Department Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Tan J, Liu JP, Yao XC, Xu ZY, Wu Y, Shi XJ, Shi M, Li M, Du XR. Correlation between initial alkaline phosphatase levels and overall survival in newly diagnosed multiple myeloma patients. Transl Cancer Res 2024; 13:3328-3337. [PMID: 39145085 PMCID: PMC11319959 DOI: 10.21037/tcr-24-330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/10/2024] [Indexed: 08/16/2024]
Abstract
Background Alkaline phosphatase (ALP) reflects changes in the condition of multiple myeloma (MM) patients to some extent. However, the relationship of ALP in MM remains uncertain. Our study aimed to determine the association between initial ALP levels and overall survival in newly diagnosed MM patients. Methods Clinical data from 202 newly diagnosed MM patients at Beijing Chaoyang Hospital between 2012 and 2016 were collected. Baseline characteristics, disease progression staging, serum markers, and patient survival data were recorded. The cut-off value for ALP was calculated based on patient survival data, and patients were divided into groups. Differences in patients' 3- and 5-year survival rates, liver function, bone disease and other indicators among different groups were compared. Independent risk factors influencing newly diagnosed MM patients were identified using COX regression analysis. Results Patients were categorized into three groups based on ALP cut-off points: Group 1 (ALP <70 U/L), Group 2 (ALP 70 to <120 U/L), and Group 3 (ALP ≥120 U/L). Significant differences were observed in lactate dehydrogenase, serum calcium, white blood cell count, hemoglobin, and liver function indicators (including alanine aminotransferase, aspartate aminotransferase, albumin, and γ-glutamyl transferase) among different ALP groups (P<0.05). ALP levels varied significantly among patients with different bone disease grades (P<0.05). Median survival times for Groups 1, 2, and 3 were 25, 52, and 31 months, respectively. Group 2 exhibited significantly higher 3-year survival compared to the other two groups (P=0.006), while no significant difference was observed in 5-year survival among the three groups (P=0.51). Age, International Staging System staging, aspartate aminotransferase, β2-microglobulin, ALP grading, and severe bone disease were identified as independent factors influencing survival in newly diagnosed patients (P<0.05). Conclusions ALP levels are correlated with the prognosis of MM patients, and an ALP range of 70 to <120 U/L reflects a better survival expectation.
Collapse
Affiliation(s)
- Jie Tan
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of General Practice, Liyuan Community Health Service Center, Beijing, China
| | - Jun-Peng Liu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xing-Chen Yao
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zi-Yu Xu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yue Wu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiang-Jun Shi
- Department of Rheumatism, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Shi
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Meng Li
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xin-Ru Du
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Nica I, Volovat C, Boboc D, Popa O, Ochiuz L, Vasincu D, Ghizdovat V, Agop M, Volovat CC, Lupascu Ursulescu C, Lungulescu CV, Volovat SR. A Holographic-Type Model in the Description of Polymer-Drug Delivery Processes. Pharmaceuticals (Basel) 2024; 17:541. [PMID: 38675501 PMCID: PMC11053585 DOI: 10.3390/ph17040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
A unitary model of drug release dynamics is proposed, assuming that the polymer-drug system can be assimilated into a multifractal mathematical object. Then, we made a description of drug release dynamics that implies, via Scale Relativity Theory, the functionality of continuous and undifferentiable curves (fractal or multifractal curves), possibly leading to holographic-like behaviors. At such a conjuncture, the Schrödinger and Madelung multifractal scenarios become compatible: in the Schrödinger multifractal scenario, various modes of drug release can be "mimicked" (via period doubling, damped oscillations, modulated and "chaotic" regimes), while the Madelung multifractal scenario involves multifractal diffusion laws (Fickian and non-Fickian diffusions). In conclusion, we propose a unitary model for describing release dynamics in polymer-drug systems. In the model proposed, the polymer-drug dynamics can be described by employing the Scale Relativity Theory in the monofractal case or also in the multifractal one.
Collapse
Affiliation(s)
- Irina Nica
- Department of Odontology-Periodontology, Fixed Prosthesis, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str, 700115 Iasi, Romania;
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str, 700115 Iasi, Romania;
| | - Ovidiu Popa
- Department of Emergency Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Lacramioara Ochiuz
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Decebal Vasincu
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Maricel Agop
- Department of Physics, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Romanian Scientists Academy, 050094 Bucharest, Romania
| | - Cristian Constantin Volovat
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.C.V.); (C.L.U.)
| | - Corina Lupascu Ursulescu
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.C.V.); (C.L.U.)
| | | | - Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str, 700115 Iasi, Romania;
| |
Collapse
|
6
|
Ashoub MH, Razavi R, Heydaryan K, Salavati-Niasari M, Amiri M. Targeting ferroptosis for leukemia therapy: exploring novel strategies from its mechanisms and role in leukemia based on nanotechnology. Eur J Med Res 2024; 29:224. [PMID: 38594732 PMCID: PMC11003188 DOI: 10.1186/s40001-024-01822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
The latest findings in iron metabolism and the newly uncovered process of ferroptosis have paved the way for new potential strategies in anti-leukemia treatments. In the current project, we reviewed and summarized the current role of nanomedicine in the treatment and diagnosis of leukemia through a comparison made between traditional approaches applied in the treatment and diagnosis of leukemia via the existing investigations about the ferroptosis molecular mechanisms involved in various anti-tumor treatments. The application of nanotechnology and other novel technologies may provide a new direction in ferroptosis-driven leukemia therapies. The article explores the potential of targeting ferroptosis, a new form of regulated cell death, as a new therapeutic strategy for leukemia. It discusses the mechanisms of ferroptosis and its role in leukemia and how nanotechnology can enhance the delivery and efficacy of ferroptosis-inducing agents. The article not only highlights the promise of ferroptosis-targeted therapies and nanotechnology in revolutionizing leukemia treatment, but also calls for further research to overcome challenges and fully realize the clinical potential of this innovative approach. Finally, it discusses the challenges and opportunities in clinical applications of ferroptosis.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Kamran Heydaryan
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
7
|
Vo MC, Jung SH, Nguyen VT, Tran VDH, Ruzimurodov N, Kim SK, Nguyen XH, Kim M, Song GY, Ahn SY, Ahn JS, Yang DH, Kim HJ, Lee JJ. Exploring cellular immunotherapy platforms in multiple myeloma. Heliyon 2024; 10:e27892. [PMID: 38524535 PMCID: PMC10957441 DOI: 10.1016/j.heliyon.2024.e27892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Despite major advances in therapeutic platforms, most patients with multiple myeloma (MM) eventually relapse and succumb to the disease. Among the novel therapeutic options developed over the past decade, genetically engineered T cells have a great deal of potential. Cellular immunotherapies, including chimeric antigen receptor (CAR) T cells, are rapidly becoming an effective therapeutic modality for MM. Marrow-infiltrating lymphocytes (MILs) derived from the bone marrow of patients with MM are a novel source of T cells for adoptive T-cell therapy, which robustly and specifically target myeloma cells. In this review, we examine the recent innovations in cellular immunotherapies, including the use of dendritic cells, and cellular tools based on MILs, natural killer (NK) cells, and CAR T cells, which hold promise for improving the efficacy and/or reducing the toxicity of treatment in patients with MM.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Institute of Research and Development, Duy Tan University, Danang, Viet Nam
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Van-Tan Nguyen
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Van-Dinh-Huan Tran
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Nodirjon Ruzimurodov
- Institute of Immunology and Human Genomics of the Academy of Sciences of the Republic of Uzbekistan, Uzbekistan
| | - Sang Ki Kim
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-eup, Yesan-gun, Chungnam, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Xuan-Hung Nguyen
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Mihee Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Ga-Young Song
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Seo-Yeon Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Deok-Hwan Yang
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|