1
|
Silva JP, Frederico TD, Ticona ARP, Pinto OHB, Williams TCR, Krüger RH, Noronha EF. Insights on kraft lignin degradation in an anaerobic environment. Enzyme Microb Technol 2024; 179:110468. [PMID: 38850683 DOI: 10.1016/j.enzmictec.2024.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Lignin is an aromatic macromolecule and one of the main constituents of lignocellulosic materials. Kraft lignin is generated as a residual by-product of the lignocellulosic biomass industrial process, and it might be used as a feedstock to generate low molecular weight aromatic compounds. In this study, we seek to understand and explore the potential of ruminal bacteria in the degradation of kraft lignin. We established two consortia, KLY and KL, which demonstrated significant lignin-degrading capabilities. Both consortia reached maximum growth after two days, with KLY showing a higher growth and decolorization rate. Additionally, SEM analysis revealed morphological changes in the residual lignin from both consortia, indicating significant degradation. This was further supported by FTIR spectra, which showed new bands corresponding to the C-H vibrations of guaiacyl and syringyl units, suggesting structural transformations of the lignin. Taxonomic analysis showed enrichment of the microbial community with members of the Dickeya genus. Seven metabolic pathways related to lignin metabolism were predicted for the established consortia. Both consortia were capable of consuming aromatic compounds such as 4-hydroxybenzoic acid, syringaldehyde, acetovanillone, and syringic acid, highlighting their capacity to convert aromatic compounds into commercially valuable molecules presenting antifungal activity and used as food preservatives as 4-hydroxyphenylacetic, 3-phenylacetic, and phenylacetic acids. Therefore, the microbial consortia shown in the present work are models for understanding the process of lignin degradation and consumption in bacterial anaerobic communities and developing biological processes to add value to industrial processes based on lignocellulosic biomass as feedstock.
Collapse
Affiliation(s)
- Jéssica P Silva
- Enzymology Laboratory, Cell Biology Department, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - Tayná D Frederico
- Enzymology Laboratory, Cell Biology Department, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - Alonso R P Ticona
- Enzyme Biotechnology Research Laboratory, Science Faculty, Universidad Nacional Jorge Basadre Grohmann, Tacna 23003, Peru
| | - Otávio H B Pinto
- Genomic for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
| | - Thomas C R Williams
- Plant Biochemistry Laboratory, Department of Botany, University of Brasilia, Brasília 70910-900, Brazil
| | - Ricardo H Krüger
- Enzymology Laboratory, Cell Biology Department, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - Eliane F Noronha
- Enzymology Laboratory, Cell Biology Department, Universidade de Brasília (UnB), Brasília 70910-900, Brazil.
| |
Collapse
|
2
|
Zhang Y, Pan L, Fang Y, Wang X, Gu S. Inhibition effect of preservatives or disinfectants on
F. concentricum
from postharvest asparagus (
Asparagus officinalis
L.) spear in vitro and in vivo. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yuanyuan Zhang
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| | - Lixiu Pan
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| | - Yonggang Fang
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| | - Xiangyang Wang
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| | - Shuang Gu
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| |
Collapse
|
3
|
Liu QL, Zhang Z, Wei X, Zhou ZG. Noncoding RNAs in tumor metastasis: molecular and clinical perspectives. Cell Mol Life Sci 2021; 78:6823-6850. [PMID: 34499209 PMCID: PMC11073083 DOI: 10.1007/s00018-021-03929-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Metastasis is the main culprit of cancer-associated mortality and involves a complex and multistage process termed the metastatic cascade, which requires tumor cells to detach from the primary site, intravasate, disseminate in the circulation, extravasate, adapt to the foreign microenvironment, and form organ-specific colonization. Each of these processes has been already studied extensively for molecular mechanisms focused mainly on protein-coding genes. Recently, increasing evidence is pointing towards RNAs without coding potential for proteins, referred to as non-coding RNAs, as regulators in shaping cellular activity. Since those first reports, the detection and characterization of non-coding RNA have explosively thrived and greatly enriched the understanding of the molecular regulatory networks in metastasis. Moreover, a comprehensive description of ncRNA dysregulation will provide new insights into novel tools for the early detection and treatment of metastatic cancer. In this review, we focus on discussion of the emerging role of ncRNAs in governing cancer metastasis and describe step by step how ncRNAs impinge on cancer metastasis. In particular, we highlight the diagnostic and therapeutic applications of ncRNAs in metastatic cancer.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
4
|
Qian Y, Gao Z, Wang J, Wang C, Li G, Fu F, Guo J, Shan Y. Safety Evaluation and Whole Genome Sequencing of Aspergillus japonicas PJ01 Reveal Its Potential to Degrade Citrus Segments in Juice Processing. Foods 2021; 10:foods10081736. [PMID: 34441514 PMCID: PMC8391945 DOI: 10.3390/foods10081736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Aspergillus japonicas PJ01 (A. japonicas PJ01) is a strain isolated from the rotten branches. In previ-ous studies, it was shown that it can produce complex enzymes to degrade polysaccharide com-ponents. In this study, we evaluated the safety of its crude enzyme solution. Acute oral toxicity, subchronic toxicity, micronucleus and sperm malformation tests all validated the high biologi-cal safety for the crude enzymes. Secondly, we carried out the citrus segment degradation ex-periment of crude enzyme solution. Compared with the control group, the crude enzyme solu-tion of A. japonicas PJ01 can completely degrade the segments in 50 min, which provides the basis for enzymatic peeling during juice processing. The whole genome sequencing showed that the genome of A. japonicus PJ01 has a GC content of 51.37% with a size of 36204647 bp, and encoded 10070 genes. GO, COG, KEGG and CAZy databases were used in gene annotation analyses. Pathway enrichment showed many genes related to carbohydrate metabolism, rich in genes re-lated to pectinase, xylanase and carboxylcellulase. Therefore, the complex enzyme produced by A. japonicus PJ01 can be used in gizzard juice processing to achieve efficient enzymatic decapsu-lation.
Collapse
Affiliation(s)
- Yujiao Qian
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Jieyi Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
| | - Chen Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
| | - Gaoyang Li
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (Y.S.); (J.G.)
| | - Yang Shan
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (Y.S.); (J.G.)
| |
Collapse
|
5
|
Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N. A Review on Bacterial Contribution to Lignocellulose Breakdown into Useful Bio-Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6001. [PMID: 34204975 PMCID: PMC8199887 DOI: 10.3390/ijerph18116001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
Discovering novel bacterial strains might be the link to unlocking the value in lignocellulosic bio-refinery as we strive to find alternative and cleaner sources of energy. Bacteria display promise in lignocellulolytic breakdown because of their innate ability to adapt and grow under both optimum and extreme conditions. This versatility of bacterial strains is being harnessed, with qualities like adapting to various temperature, aero tolerance, and nutrient availability driving the use of bacteria in bio-refinery studies. Their flexible nature holds exciting promise in biotechnology, but despite recent pointers to a greener edge in the pretreatment of lignocellulose biomass and lignocellulose-driven bioconversion to value-added products, the cost of adoption and subsequent scaling up industrially still pose challenges to their adoption. However, recent studies have seen the use of co-culture, co-digestion, and bioengineering to overcome identified setbacks to using bacterial strains to breakdown lignocellulose into its major polymers and then to useful products ranging from ethanol, enzymes, biodiesel, bioflocculants, and many others. In this review, research on bacteria involved in lignocellulose breakdown is reviewed and summarized to provide background for further research. Future perspectives are explored as bacteria have a role to play in the adoption of greener energy alternatives using lignocellulosic biomass.
Collapse
Affiliation(s)
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (O.B.C.); (H.A.T.); (N.I.)
| | | | | |
Collapse
|
6
|
Complete genome sequence of Sphingobium sp. strain PAMC 28499 reveals a potential for degrading pectin with comparative genomics approach. Genes Genomics 2020; 42:1087-1096. [PMID: 32737807 DOI: 10.1007/s13258-020-00976-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Spingobium sp. PAMC 28499 is isolated from the glaciers of Uganda. Uganda is a unique region where hot areas and glaciers coexist, with a variety of living creatures surviving, but the survey on them is very poor. The genetic character and complete genome information of Sphingobium strains help with environmental studies and the development of better to enzyme industry. OBJECTIVE In this study, complete genome sequence of Spingobium sp. PAMC 28499 and comparative analysis of Spingobium species strains isolated from variety of the region. METHODS Genome sequencing was performed using PacBio sequel single-molecule real-time (SMRT) sequencing technology. The predicted gene sequences were functionally annotated and gene prediction was carried out using the program NCBI non-redundant database. And using dbCAN2 and KEGG data base were degradation pathway predicted and protein prediction about carbohydrate active enzymes (CAZymes). RESULTS The genome sequence has 64.5% GC content, 4432 coding protein coding genes, 61 tRNAs, and 12 rRNA operons. Its genome encodes a simple set of metabolic pathways relevant to pectin and its predicted degradation protein an unusual distribution of CAZymes with extracellular esterases and pectate lyases. CAZyme annotation analyses revealed 165 genes related to carbohydrate active, and especially we have found GH1, GH2, GH3, GH38, GH35, GH51, GH51, GH53, GH106, GH146, CE12, PL1 and PL11 such as known pectin degradation genes from Sphingobium yanoikuiae. These results confirmed that this Sphingobium sp. strain PAMC 28499 have similar patterns to RG I pectin-degrading pathway. CONCLUSION In this study, isolated and sequenced the complete genome of Spingobium sp. PAMC 28499. Also, this strain has comparative genome analysis. Through the complete genome we can predict how this strain can store and produce energy in extreme environment. It can also provide bioengineered data by finding new genes that degradation the pectin.
Collapse
|
7
|
Insight in the transcriptome data of hairy root disease-causing bacterium- Agrobacterium rhizogenes. Data Brief 2020; 31:105910. [PMID: 32642520 PMCID: PMC7334392 DOI: 10.1016/j.dib.2020.105910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/27/2022] Open
Abstract
Agrobacterium rhizogenes induce the production of the hairy root through the transformation of plant genomes. In this article, we executed the transcriptome of A. rhizogenes through RNA-sequencing. RNA-sequencing of A. rhizogenes generated a total of 2.6 Gb raw data with a 75 bp paired-end sequence. The raw data has been submitted to the SRA database of NCBI with accession number SRR5641651. Reads were generated 2946 unigenes and all unigenes were annotated in the database. The length of transcripts ranged from 90 to 6369 bp, with a median transcript length of 968. The transcripts were annotated through the number of databases to obtain information about SSRs, SNPs, Gene Ontology, Transcription factors, and pathways analysis .
Collapse
|
8
|
The Biomolecular Spectrum Drives Microbial Biology and Functions in Agri-Food-Environments. Biomolecules 2020; 10:biom10030401. [PMID: 32143510 PMCID: PMC7175317 DOI: 10.3390/biom10030401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 11/17/2022] Open
Abstract
Microbial biomolecules have huge commercial and industrial potential. In nature, biological interactions are mostly associated with biochemical and biological diversity, especially with the discovery of associated biomolecules from microbes. Within cellular or subcellular systems, biomolecules signify the actual statuses of the microorganisms. Understanding the biological prospecting of the diverse microbial community and their complexities and communications with the environment forms a vital basis for active, innovative biotechnological breakthroughs. Biochemical diversity rather than the specific chemicals that has the utmost biological importance. The identification and quantification of the comprehensive biochemical diversity of the microbial molecules, which generally consequences in a diversity of biological functions, has significant biotechnological potential. Beneficial microbes and their biomolecules of interest can assist as potential constituents for the wide-range of natural product-based preparations and formulations currently being developed on an industrial scale. The understanding of the production methods and functions of these biomolecules will contribute to valorisation of agriculture, food bioprocessing and biopharma, and prevent human diseases related to the environment.
Collapse
|