1
|
Chang YH, Lee YC, Chen SH, Fang SY, Cheng TP, Chi CH, Tsai KC, Chen PJ, Hung HY. Discovery of a novel C2-functionalized chromen-4-one scaffold for the development of p38α MAPK signaling inhibitors to mitigate neutrophilic inflammatory responses. Biochem Pharmacol 2025; 235:116806. [PMID: 39956209 DOI: 10.1016/j.bcp.2025.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Neutrophil dysregulation is implicated in a spectrum of inflammatory pathologies, suggesting the potential for targeting neutrophilic hyperactivation as a pharmacological strategy to manage inflammatory disorders. Building upon prior research where 2-thiolphenoxychromone derivatives were found to inhibit neutrophilic generation of superoxide anions, this study focused on exploring the structure-activity relationship (SAR) of different C2 bridging moieties and anti-inflammatory effects using bioisosteric replacements and scaffold-hopping approaches. Among various chemotypes, the N-(4-oxo-4H-chromen-2-yl)benzenesulfonamide derivatives emerged as robust inhibitors of both superoxide anion generation and elastase release from fMLF-activated human neutrophils, with IC50 values in the single-digit micromolar range. Leveraging a forward pharmacology approach through computational prediction, compound 15b, a representative within this active molecular class, was discovered to exert these anti-inflammatory functions by blocking the p38α mitogen-activated protein kinase (MAPK) signaling cascade. This responded to a significant reduction in p38α MAPK and its downstream MK2 phosphorylation in activated neutrophils treated with 15b, with no apparent impact on extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and protein kinase B (AKT) phosphorylation levels. Additionally, this molecule exhibited inhibitory potential on intracellular reactive oxygen species (ROS) production, granule exocytosis, and chemotactic responses. Collectively, this study provides a novel skeleton for the development of inhibitors targeting the p38α MAPK pathway to mitigate neutrophilic inflammation.
Collapse
Affiliation(s)
- Yi-Han Chang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Chen Lee
- Department of Nutrition Therapy, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824, Taiwan; Department of Nutrition Therapy, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan; Department of Nutrition Therapy, E-Da Dachang Hospital, I-Shou University, Kaohsiung 824, Taiwan; Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| | - Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831, Taiwan
| | - Shu-Yen Fang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Tzu-Peng Cheng
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ching-Ho Chi
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan
| | - Keng-Chang Tsai
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan
| | - Po-Jen Chen
- Department of Medical Research, E-DA Hospital, I-Shou University, Kaohsiung 824, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
2
|
Chen YC, Lee YR, Chang YC, Wang YH, Fang SY, Lin CH, Chen PJ, Hwang TL. Scutellaria barbata ameliorates acute respiratory distress syndrome by inhibiting neutrophil-mediated inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119653. [PMID: 40122316 DOI: 10.1016/j.jep.2025.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional medicinal herb Scutellaria barbata D. Don (commonly known as Ban Zhi Lian) is renowned for its heat-clearing and detoxifying properties and has been used to treat inflammatory conditions and various cancers. While lung inflammation is an indication for S. barbata, its effects on acute respiratory distress syndrome (ARDS) remain unclear. AIM OF THE STUDY Dysregulated neutrophilic inflammation plays a critical role in the pathogenesis of ARDS. In this study, we aimed to investigate the novel application of S. barbata in treating neutrophilic inflammation and ARDS. We evaluated the therapeutic potential of the ethanol extract of S. barbata (SB-EtOH) in mitigating neutrophil-driven inflammatory responses. MATERIALS AND METHODS The chromatographic fingerprint of SB-EtOH was analyzed, and its ethnopharmacological mechanisms were examined for their effects on inflammatory responses in human neutrophils. The therapeutic potential of SB-EtOH was further assessed using a mouse model of lipopolysaccharide (LPS)-induced ARDS. RESULTS SB-EtOH significantly inhibited respiratory burst, degranulation, and chemotactic responses in activated human neutrophils without cytotoxic effects. Additionally, SB-EtOH attenuated phosphorylation of key inflammatory signaling molecules, Akt and p38, while reducing calcium mobilization in activated human neutrophils. In the LPS-induced ARDS mouse model, SB-EtOH reduced pulmonary neutrophil infiltration, lung tissue damage, and oxidative stress accumulation. CONCLUSION These findings suggest that S. barbata is a promising therapeutic candidate for ARDS and other neutrophil-predominant inflammatory diseases by mitigating neutrophilic inflammation.
Collapse
Affiliation(s)
- Yu-Cheng Chen
- Center for Drug Research and Development, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan.
| | - Yao-Rong Lee
- Center for Drug Research and Development, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan.
| | - Yu-Chia Chang
- Center for Drug Research and Development, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan; Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan.
| | - Yi-Hsuan Wang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333323, Taiwan.
| | - Shu-Yen Fang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333323, Taiwan.
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 50006, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402202, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402202, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402202, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, 824410, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Tsong-Long Hwang
- Center for Drug Research and Development, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.
| |
Collapse
|
3
|
Chen PJ, Chen SH, Chen YL, Wang YH, Lin CY, Chen CH, Tsai YF, Hwang TL. Ribociclib leverages phosphodiesterase 4 inhibition in the treatment of neutrophilic inflammation and acute respiratory distress syndrome. J Adv Res 2024; 62:229-243. [PMID: 38548264 PMCID: PMC11331181 DOI: 10.1016/j.jare.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
INTRODUCTION Overwhelming neutrophil activation and oxidative stress significantly contribute to acute respiratory distress syndrome (ARDS) pathogenesis. However, the potential of repurposing ribociclib, a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor used clinically in cancer treatment, for treating neutrophilic ARDS remains uncertain. This study illustrated the ability and underlying mechanism of ribociclib for treating ARDS and neutrophilic inflammation. METHODS Primary human neutrophils were used to determine the therapeutic effects of ribociclib on respiratory bursts, chemotactic responses, and inflammatory signaling. In vitro and silico analyses were performed to determine the underlying molecular mechanisms. The potential of ribociclib repurposing was evaluated using an in vivo ARDS model in lipopolysaccharide (LPS)-primed mice. RESULTS We found that treatment using ribociclib markedly limited overabundant oxidative stress (reactive oxygen species [ROS]) production and chemotactic responses (integrin levels and adhesion) in activated human neutrophils. Ribociclib was also shown to act as a selective inhibitor of phosphodiesterase 4 (PDE4), thereby promoting the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, leading to the inhibition of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) phosphorylation, and calcium influx. Notably, prophylactic administration and post-treatment with ribociclib ameliorated neutrophil infiltration, lung inflammation, accumulation of oxidative stress, pulmonary destruction, and mortality in mice with LPS-induced ARDS. CONCLUSION We demonstrated for the first time that ribociclib serves as a novel PDE4 inhibitor for treating neutrophilic inflammation and ARDS. The repurposing ribociclib and targeting neutrophilic PDE4 offer a potential off-label alternative for treating lung lesions and other inflammatory conditions.
Collapse
Affiliation(s)
- Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, I-Shou University, Kaohsiung 824410, Taiwan
| | - Shun-Hua Chen
- Departmentof Nursing, Fooyin University, Kaohsiung 831301, Taiwan
| | - Yu-Li Chen
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan
| | - Cheng-Yu Lin
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan
| | - Yung-Fong Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
4
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2024:S2090-1232(24)00310-2. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
5
|
Jiang F, Hua C, Pan J, Peng S, Ning D, Chen C, Li S, Xu X, Wang L, Zhang C, Li M. Effect fraction of Bletilla striata (Thunb.) Reichb.f. alleviates LPS-induced acute lung injury by inhibiting p47 phox/NOX2 and promoting the Nrf2/HO-1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155186. [PMID: 38387272 DOI: 10.1016/j.phymed.2023.155186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND & AIMS The effect fraction of Bletilla striata (Thunb.) Reichb.f. (EFBS), a phenolic-rich extract, has significant protective effects on lipopolysaccharide (LPS)-induced acute lung injury (ALI), but its composition and molecular mechanisms are unclear. This study elucidated its chemical composition and possible protective mechanisms against LPS-induced ALI from an antioxidant perspective. METHODS EFBS was prepared by ethanol extraction, enriched by polyamide column chromatography, and characterized using ultra-performance liquid chromatography/time-of-flight mass spectrometry. The LPS-induced ALI model and the RAW264.7 model were used to evaluate the regulatory effects of EFBS on oxidative stress, and transcriptome analysis was performed to explore its possible molecular mechanism. Then, the pathway by which EFBS regulates oxidative stress was validated through inhibitor intervention, flow cytometry, quantitative PCR, western blotting, and immunofluorescence techniques. RESULTS A total of 22 compounds in EFBS were identified. The transcriptome analyses of RAW264.7 cells indicated that EFBS might reduce reactive oxygen species (ROS) production by inhibiting the p47phox/NADPH oxidase 2 (NOX2) pathway and upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Both in vitro and in vivo data confirmed that EFBS significantly inhibited the expression and phosphorylation of p47phox protein, thereby weakening the p47phox/NOX2 pathway and reducing ROS production. EFBS significantly increased the expression of Nrf2 in primary peritoneal macrophages and lung tissue and promoted its nuclear translocation, dose-dependent increase in HO-1 levels, and enhancement of antioxidant activity. In vitro, both Nrf2 and HO-1 inhibitors significantly reduced the scavenging effects of EFBS on ROS, further confirming that EFBS exerts antioxidant effects at least partially by upregulating the Nrf2/HO-1 pathway. CONCLUSIONS EFBS contains abundant phenanthrenes and dibenzyl polyphenols, which can reduce ROS production by inhibiting the p47phox/NOX2 pathway and enhance ROS clearance activity by upregulating the Nrf2/HO-1 pathway, thereby exerting regulatory effects on oxidative stress and improving LPS-induced ALI.
Collapse
Affiliation(s)
- Fusheng Jiang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chenglong Hua
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jieli Pan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Suyu Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dandan Ning
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cheng Chen
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shiqing Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaohua Xu
- People's Hospital of Quzhou, Quzhou 324002, China
| | - Linyan Wang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chunchun Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Meiya Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
6
|
Koc K, Ozek NS, Aysin F, Demir O, Yilmaz A, Yilmaz M, Geyikoglu F, Erol HS. Hispidulin exerts a protective effect against oleic acid induced-ARDS in the rat via inhibition of ACE activity and MAPK pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:755-766. [PMID: 36624973 DOI: 10.1080/09603123.2023.2166023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study investigates the protective role of Hispidulin on acute respiratory distress syndrome (ARDS) in rats. Rats were divided into three groups: control, ARDS, ARDS+ Hispidulin. The ARDS models were established by injecting rats with oleic acid. Hispidulin (100 mg/kg) was injected i.p. an hour before ARDS. Myeloperoxidase (MPO), Interleukin-8 (IL-8), Mitogen-activated protein kinases (MAPK), Lipid Peroxidation (LPO), Superoxide Dismutase (SOD), Glutathione (GSH), and Angiotensin-converting enzyme (ACE) were determined by ELISA. Tumor necrosis factor-alpha (TNF-α) expression was described by RT-qPCR. Caspase-3 immunostaining was performed to evaluate apoptosis. Compared with the model group, a significant decrease was observed in the MPO, IL-8, MAPK, ACE, LPO levels, and TNF-α expression in the ARDS+ Hispidulin group. Moreover, reduced caspase-3 immunoreactivity and activity of ACE were detected in the Hispidulin+ARDS group. The protective effect of Hispidulin treatment may act through inhibition of the ACE activity and then regulation of inflammatory cytokine level and alteration of apoptosis.
Collapse
Affiliation(s)
- Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Ferhunde Aysin
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Ozlem Demir
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Asli Yilmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Mehmet Yilmaz
- Department of Nanoscience and Nanoengineering, Atatürk University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Kastamonu University, Faculty of Veterinary Medicine, Kastamonu, TURKEY
| |
Collapse
|
7
|
Mostafa A, Mostafa-Hedeab G, Elhady HA, Mohamed EA, Eledrdery AY, Alruwaili SH, Al-Abd AM, Allayeh AK. Dual action of epigallocatechin-3-gallate in virus-induced cell Injury. J Genet Eng Biotechnol 2023; 21:145. [PMID: 38012348 PMCID: PMC10682343 DOI: 10.1186/s43141-023-00624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Viral infections cause damage and long-term injury to infected human tissues, demanding therapy with antiviral and wound healing medications. Consequently, safe phytochemical molecules that may control viral infections with an ability to provide wound healing to viral-induced tissue injuries, either topically or systemically, are advantageous. Herein, we hypothesized that epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, might be effective as a wound healing, antiviral, and antifibrotic therapy. RESULTS The antiviral activities of EGCG against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Herpes simplex virus type 2 (HSV-2) as well as its wound healing activities against different monolayer tissue (continuous and primary) systems were investigated. Consider its possible wound-healing advantages as well. To determine the safe concentrations of EGCG in green monkey kidney (Vero) and Vero-E6 cell lines, MTT assay was performed and showed high CC50 values of 405.1 and 322.9 μM, respectively. The antiviral activities of EGCG against SARS-CoV-2 and HSV-2, measured as half-maximal concentration 50 (IC50) concentrations, were 36.28 and 59.88 μM, respectively. These results confirm that the EGCG has remarkable viral inhibitory activities and could successfully suppress the replication of SARS-CoV-2 and HSV-2 in vitro with acceptable selectivity indices (SI) of 11.16 and 5.39, respectively. In parallel, the EGCG exhibits significant and dose/time-dependent anti-migration effects in human breast cancer cells (MCF-7), its resistant variation (MCF-7adr), and human skin fibroblast (HSF) indicating their potential to heal injuries in different internal and topical mammalian systems. CONCLUSIONS The EGCG has proven to be an efficient antiviral against SARS-CoV-2 and HSV-2, as well as a wound-healing phytochemical. We assume that EGCG may be a promising option for slowing the course of acute cellular damage induced by systemic (Coronavirus Disease 2019 (COVID-19)) or topical (HSV-2) viral infections.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA.
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt.
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, 11564, Skaka, Saudi Arabia.
| | | | - Esraa Ahmed Mohamed
- Virology Department, Nawah Scientific Co, Almokattam Mall, Street 9, Egypt, 11562, El Mokattam, Egypt
| | - Abozer Y Eledrdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf Uni-Versity, 11564, Sakaka, Saudi Arabia
| | - Sager Holyl Alruwaili
- Department of Surgery, Orthopedic Division, College of Medicine, Jouf University, 11564, Sakaka, Saudi Arabia
| | - Ahmed Mohamed Al-Abd
- Pharmacology Department, Medical and Clinical Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Abdou Kamal Allayeh
- Water Pollution Department, Virology Laboratory, National Research Centre, Dokki, 12622, Giza, Egypt
| |
Collapse
|
8
|
Chang Y, Yoo HJ, Kim SJ, Lee K, Lim CM, Hong SB, Koh Y, Huh JW. A targeted metabolomics approach for sepsis-induced ARDS and its subphenotypes. Crit Care 2023; 27:263. [PMID: 37408042 DOI: 10.1186/s13054-023-04552-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is etiologically and clinically a heterogeneous disease. Its diagnostic characteristics and subtype classification, and the application of these features to treatment, have been of considerable interest. Metabolomics is becoming important for identifying ARDS biology and distinguishing its subtypes. This study aimed to identify metabolites that could distinguish sepsis-induced ARDS patients from non-ARDS controls, using a targeted metabolomics approach, and to identify whether sepsis-induced direct and sepsis-induced indirect ARDS are metabolically distinct groups, and if so, confirm their metabolites and associated pathways. METHODS This study retrospectively analyzed 54 samples of ARDS patients from a sepsis registry that was prospectively collected from March 2011 to February 2018, along with 30 non-ARDS controls. The cohort was divided into direct and indirect ARDS. Metabolite concentrations of five analyte classes (energy metabolism, free fatty acids, amino acids, phospholipids, sphingolipids) were measured using liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry by targeted metabolomics. RESULTS In total, 186 metabolites were detected. Among them, 102 metabolites could differentiate sepsis-induced ARDS patients from the non-ARDS controls, while 14 metabolites could discriminate sepsis-induced ARDS subphenotypes. Using partial least-squares discriminant analysis, we showed that sepsis-induced ARDS patients were metabolically distinct from the non-ARDS controls. The main distinguishing metabolites were lysophosphatidylethanolamine (lysoPE) plasmalogen, PE plasmalogens, and phosphatidylcholines (PCs). Sepsis-induced direct and indirect ARDS were also metabolically distinct subgroups, with differences in lysoPCs. Glycerophospholipid and sphingolipid metabolism were the most significant metabolic pathways involved in sepsis-induced ARDS biology and in sepsis-induced direct/indirect ARDS, respectively. CONCLUSION Our study demonstrated a marked difference in metabolic patterns between sepsis-induced ARDS patients and non-ARDS controls, and between sepsis-induced direct and indirect ARDS subpheonotypes. The identified metabolites and pathways can provide clues relevant to the diagnosis and treatment of individuals with ARDS.
Collapse
Affiliation(s)
- Youjin Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Su Jung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kwangha Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Chae-Man Lim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang-Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
9
|
Honda A, Inoue KI, Higashihara M, Ichinose T, Ueda K, Takano H. Differential Pattern of Cell Death and ROS Production in Human Airway Epithelial Cells Exposed to Quinones Combined with Heated-PM2.5 and/or Asian Sand Dust. Int J Mol Sci 2023; 24:10544. [PMID: 37445720 PMCID: PMC10341977 DOI: 10.3390/ijms241310544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The combined toxicological effects of airborne particulate matter (PM), such as PM2.5, and Asian sand dust (ASD), with surrounding chemicals, particularly quinones, on human airway epithelial cells remain underexplored. In this study, we established an in vitro combination exposure model using 1,2-naphthoquinones (NQ) and 9,10-phenanthroquinones (PQ) along with heated PM (h-PM2.5 and h-ASD) to investigate their potential synergistic effects. The impacts of quinones and heated PM on tetrazolium dye (WST-1) reduction, cell death, and cytokine and reactive oxygen species (ROS) production were examined. Results revealed that exposure to 9,10-PQ with h-PM2.5 and/or h-ASD dose-dependently increased WST-1 reduction at 1 μM compared to the corresponding control while markedly decreasing it at 10 μM. Higher early apoptotic, late apoptotic, or necrotic cell numbers were detected in 9,10-PQ + h-PM2.5 exposure than in 9,10-PQ + h-ASD or 9,10-PQ + h-PM2.5 + h-ASD. Additionally, 1,2-NQ + h-PM2.5 exposure also resulted in an increase in cell death compared to 1,2-NQ + h-ASD and 1,2-NQ + h-PM2.5 + h-ASD. Quinones with or without h-PM2.5, h-ASD, or h-PM2.5 + h-ASD significantly increased ROS production, especially with h-PM2.5. Our findings suggest that quinones, at relatively low concentrations, induce cell death synergistically in the presence of h-PM2.5 rather than h-ASD and h-PM2.5 + h-ASD, partially through the induction of apoptosis with increased ROS generation.
Collapse
Affiliation(s)
- Akiko Honda
- Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Ken-ichiro Inoue
- School of Nursing, University of Shizuoka, Shizuoka 422-8526, Japan
| | | | - Takamichi Ichinose
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 615-8540, Japan
- Department of Health Science, Oita University of Nursing and Health Sciences, Oita 870-1201, Japan
| | - Kayo Ueda
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Hokkaido 060-8638, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 615-8540, Japan
- Institute for International Academic Research, Kyoto University of Advanced Science, Kyoto 615-8577, Japan
| |
Collapse
|
10
|
Therapeutic Effects of Green Tea Polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int J Mol Sci 2022; 24:ijms24010340. [PMID: 36613784 PMCID: PMC9820274 DOI: 10.3390/ijms24010340] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
(‒)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. Thanks to multiple interactions with cell surface receptors, intracellular signaling pathways, and nuclear transcription factors, EGCG possesses a wide variety of anti-inflammatory, antioxidant, antifibrotic, anti-remodelation, and tissue-protective properties which may be useful in the treatment of various diseases, particularly in cancer, and neurological, cardiovascular, respiratory, and metabolic disorders. This article reviews current information on the biological effects of EGCG in the above-mentioned disorders in relation to molecular pathways controlling inflammation, oxidative stress, and cell apoptosis.
Collapse
|
11
|
Barabutis N, Akhter MS, Kubra KT, Jackson K. Growth Hormone-Releasing Hormone in Endothelial Inflammation. Endocrinology 2022; 164:6887354. [PMID: 36503995 PMCID: PMC9923806 DOI: 10.1210/endocr/bqac209] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The discovery of hypothalamic hormones propelled exciting advances in pharmacotherapy and improved life quality worldwide. Growth hormone-releasing hormone (GHRH) is a crucial element in homeostasis maintenance, and regulates the release of growth hormone from the anterior pituitary gland. Accumulating evidence suggests that this neuropeptide can also promote malignancies, as well as inflammation. Our review is focused on the role of that 44 - amino acid peptide (GHRH) and its antagonists in inflammation and vascular function, summarizing recent findings in the corresponding field. Preclinical studies demonstrate the protective role of GHRH antagonists against endothelial barrier dysfunction, suggesting that the development of those peptides may lead to new therapies against pathologies related to vascular remodeling (eg, sepsis, acute respiratory distress syndrome). Targeted therapies for those diseases do not exist.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Correspondence: Nektarios Barabutis, MSc, PhD, School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Dr, Monroe, LA 71201, USA.
| | | | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Keith Jackson
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
12
|
Tiboldi A, Hunyadi-Gulyas E, Wohlrab P, Schmid JA, Markstaller K, Klein KU, Tretter V. Effects of Hyperoxia and Hyperoxic Oscillations on the Proteome of Murine Lung Microvascular Endothelium. Antioxidants (Basel) 2022; 11:2349. [PMID: 36552557 PMCID: PMC9774699 DOI: 10.3390/antiox11122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Patients presenting with insufficient tissue oxygenation and impaired lung function as in acute respiratory distress syndrome (ARDS) frequently require mechanical ventilation with supplemental oxygen. Despite the lung being used to experiencing the highest partial pressure of oxygen during healthy breathing, the organ is susceptible to oxygen-induced injury at supraphysiological concentrations. Hyperoxia-induced lung injury (HALI) has been regarded as a second hit to pre-existing lung injury and ventilator-induced lung injury (VILI) attributed to oxidative stress. The injured lung has a tendency to form atelectasis, a cyclic collapse and reopening of alveoli. The affected lung areas experience oxygen conditions that oscillate between hyperoxia and hypoxia rather than remaining in a constant hyperoxic state. Mechanisms of HALI have been investigated in many animal models previously. These studies provided insights into the effects of hyperoxia on the whole organism. However, cell type-specific responses have not been dissected in detail, but are necessary for a complete mechanistic understanding of ongoing pathological processes. In our study, we investigated the effects of constant and intermittent hyperoxia on the lung endothelium from a mouse by an in vitro proteomic approach. We demonstrate that these oxygen conditions have characteristic effects on the pulmonary endothelial proteome that underlie the physiological (patho)mechanisms.
Collapse
Affiliation(s)
- Akos Tiboldi
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, 1090 Vienna, Austria
| | - Eva Hunyadi-Gulyas
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Peter Wohlrab
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes A. Schmid
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Klaus Markstaller
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus Ulrich Klein
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, 1090 Vienna, Austria
| | - Verena Tretter
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
13
|
Millar MW, Fazal F, Rahman A. Therapeutic Targeting of NF-κB in Acute Lung Injury: A Double-Edged Sword. Cells 2022; 11:3317. [PMID: 36291185 PMCID: PMC9601210 DOI: 10.3390/cells11203317] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a devastating disease that can be caused by a variety of conditions including pneumonia, sepsis, trauma, and most recently, COVID-19. Although our understanding of the mechanisms of ALI/ARDS pathogenesis and resolution has considerably increased in recent years, the mortality rate remains unacceptably high (~40%), primarily due to the lack of effective therapies for ALI/ARDS. Dysregulated inflammation, as characterized by massive infiltration of polymorphonuclear leukocytes (PMNs) into the airspace and the associated damage of the capillary-alveolar barrier leading to pulmonary edema and hypoxemia, is a major hallmark of ALI/ARDS. Endothelial cells (ECs), the inner lining of blood vessels, are important cellular orchestrators of PMN infiltration in the lung. Nuclear factor-kappa B (NF-κB) plays an essential role in rendering the endothelium permissive for PMN adhesion and transmigration to reach the inflammatory site. Thus, targeting NF-κB in the endothelium provides an attractive approach to mitigate PMN-mediated vascular injury, not only in ALI/ARDS, but in other inflammatory diseases as well in which EC dysfunction is a major pathogenic mechanism. This review discusses the role and regulation of NF-κB in the context of EC inflammation and evaluates the potential and problems of targeting it as a therapy for ALI/ARDS.
Collapse
Affiliation(s)
| | | | - Arshad Rahman
- Department of Pediatrics (Neonatology), Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
14
|
Acute Endotoxemia-Induced Respiratory and Intestinal Dysbiosis. Int J Mol Sci 2022; 23:ijms231911602. [PMID: 36232913 PMCID: PMC9569575 DOI: 10.3390/ijms231911602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a severe condition characterized by systemic inflammation, which may lead to multiple organ failure, shock and death. SIRS is common in burn patients, pancreatitis and sepsis. SIRS is often accompanied by intestinal dysbiosis. However, the mechanism, role and details of microbiome alterations during the early phase of acute SIRS are not completely understood. The current study aimed to characterize the dynamic alterations of both the intestinal and respiratory microbiome at two timepoints during the early phase of acute SIRS (4 and 8 h after LPS) and link these to the host response in a mouse model of a LPS-induced lethal SIRS. Acute SIRS had no effect on the microbiome in the large intestine but induced a rapid dysbiosis in the small intestine, which resembled the microbiome alterations commonly observed in SIRS patients. Later in the disease progression, a dysbiosis of the respiratory microbiome was observed, which was associated with the MMP9 expression in the lungs. Although similar bacteria were increased in both the lung and the small intestine, no evidence for a gut-lung translocation was observed. Gut dysbiosis is commonly observed in diseases involving inflammation in the gut. However, whether the inflammatory response associated with SIRS and sepsis can directly cause gut dysbiosis was still unclear. In the current study we provide evidence that a LPS-induced SIRS can directly cause dysbiosis of the small intestinal and respiratory microbiome.
Collapse
|
15
|
Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A Time for a New Player in the Treatment of Respiratory Diseases? Antioxidants (Basel) 2022; 11:antiox11081566. [PMID: 36009285 PMCID: PMC9405266 DOI: 10.3390/antiox11081566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol of green tea that possesses a wide variety of actions. EGCG acts as a strong antioxidant which effectively scavenges reactive oxygen species (ROS), inhibits pro-oxidant enzymes including NADPH oxidase, activates antioxidant systems including superoxide dismutase, catalase, or glutathione, and reduces abundant production of nitric oxide metabolites by inducible nitric oxide synthase. ECGC also exerts potent anti-inflammatory, anti-fibrotic, pro-apoptotic, anti-tumorous, and metabolic effects via modulation of a variety of intracellular signaling cascades. Based on this knowledge, the use of EGCG could be of benefit in respiratory diseases with acute or chronic inflammatory, oxidative, and fibrotizing processes in their pathogenesis. This article reviews current information on the biological effects of EGCG in those respiratory diseases or animal models in which EGCG has been administered, i.e., acute respiratory distress syndrome, respiratory infections, COVID-19, bronchial asthma, chronic obstructive pulmonary disease, lung fibrosis, silicosis, lung cancer, pulmonary hypertension, and lung embolism, and critically discusses effectiveness of EGCG administration in these respiratory disorders. For this review, articles in English language from the PubMed database were used.
Collapse
|
16
|
Nucera F, Mumby S, Paudel KR, Dharwal V, DI Stefano A, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of oxidative stress in the pathogenesis of COPD. Minerva Med 2022; 113:370-404. [PMID: 35142479 DOI: 10.23736/s0026-4806.22.07972-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic inhalation of cigarette smoke is a prominent cause of chronic obstructive pulmonary disease (COPD) and provides an important source of exogenous oxidants. In addition, several inflammatory and structural cells are a source of endogenous oxidants in the lower airways of COPD patients, even in former smokers. This suggests that oxidants play a key role in the pathogenesis of COPD. This oxidative stress is counterbalanced by the protective effects of the various endogenous antioxidant defenses of the lower airways. A large amount of data from animal models and patients with COPD have shown that both the stable phase of the disease, and during exacerbations, have increased oxidative stress in the lower airways compared with age-matched smokers with normal lung function. Thus, counteracting the increased oxidative stress may produce clinical benefits in COPD patients. Smoking cessation is currently the most effective treatment of COPD patients and reduces oxidative stress in the lower airways. In addition, many drugs used to treat COPD have some antioxidant effects, however, it is still unclear if their clinical efficacy is related to pharmacological modulation of the oxidant/antioxidant balance. Several new antioxidant compounds are in development for the treatment of COPD.
Collapse
Affiliation(s)
- Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy -
| | - Sharon Mumby
- Airways Diseases Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, UK
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Vivek Dharwal
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Antonino DI Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Novara, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Ian M Adcock
- Airways Diseases Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| |
Collapse
|