1
|
Pratiwi N, Ulfah AJ, Rachmadina R, Irham LM, Afief AR, Adikusuma W, Darmawi D, Kemal RA, Rangkuti IF, Savira M. Promising candidate drug target genes for repurposing in cervical cancer: A bioinformatics-based approach. NARRA J 2024; 4:e938. [PMID: 39816079 PMCID: PMC11731801 DOI: 10.52225/narra.v4i3.938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/28/2024] [Indexed: 01/18/2025]
Abstract
Cervical cancer is the fourth most common cancer among women globally, and studies have shown that genetic variants play a significant role in its development. A variety of germline and somatic mutations are associated with cervical cancer. However, genomic data derived from these mutations have not been extensively utilized for the development of repurposed drugs for cervical cancer. The objective of this study was to identify novel potential drugs that could be repurposed for cervical cancer treatment through a bioinformatics approach. A comprehensive genomic and bioinformatics database integration strategy was employed to identify potential drug target genes for cervical cancer. Using the GWAS and PheWAS databases, a total of 232 genes associated with cervical cancer were identified. These pharmacological target genes were further refined by applying a biological threshold of six functional annotations. The drug target genes were then cross-referenced with cancer treatment candidates using the DrugBank database. Among the identified genes, LTA, TNFRSF1A, PRKCZ, PDE4B, and PARP were highlighted as promising targets for repurposed drugs. Notably, these five target genes overlapped with 12 drugs that could potentially be repurposed for cervical cancer treatment. Among these, talazoparib, a potent PARP inhibitor, emerged as a particularly promising candidate. Interestingly, talazoparib is currently being investigated for safety and tolerability in other cancers but has not yet been studied in the context of cervical cancer. Further clinical trials are necessary to validate this finding and explore its potential as a repurposed drug for cervical cancer.
Collapse
Affiliation(s)
- Nurfi Pratiwi
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
- Department of Histology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Aida J. Ulfah
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Rachmadina Rachmadina
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Lalu M. Irham
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Arief R. Afief
- Faculty of Pharmacy, Universitas YPIB Majalengka, Majalengka, Indonesia
| | - Wirawan Adikusuma
- Department of Pharmacy, Universitas Muhammadiyah Mataram, Mataram, Indonesia
- Research Center for Computing, Research Organization for Electronics and Informatics, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong, Indonesia
| | - Darmawi Darmawi
- Department of Histology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
- Graduate School in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Rahmat A. Kemal
- Department of Medical Biology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Ina F. Rangkuti
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Maya Savira
- Graduate School in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
- Department of Microbiology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| |
Collapse
|
2
|
Herrera-Luis E, Martin-Almeida M, Pino-Yanes M. Asthma-Genomic Advances Toward Risk Prediction. Clin Chest Med 2024; 45:599-610. [PMID: 39069324 PMCID: PMC11284279 DOI: 10.1016/j.ccm.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Asthma is a common complex airway disease whose prediction of disease risk and most severe outcomes is crucial in clinical practice for adequate clinical management. This review discusses the latest findings in asthma genomics and current obstacles faced in moving forward to translational medicine. While genome-wide association studies have provided valuable insights into the genetic basis of asthma, there are challenges that must be addressed to improve disease prediction, such as the need for diverse representation, the functional characterization of genetic variants identified, variant selection for genetic testing, and refining prediction models using polygenic risk scores.
Collapse
Affiliation(s)
- Esther Herrera-Luis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe Street, Baltimore, MD 21205, USA.
| | - Mario Martin-Almeida
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n. Facultad de Ciencias, San Cristóbal de La Laguna, S/C de Tenerife La Laguna 38200, Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n. Facultad de Ciencias, San Cristóbal de La Laguna, S/C de Tenerife La Laguna 38200, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), San Cristóbal de La Laguna 38200, Tenerife, Spain
| |
Collapse
|
3
|
Saravanan KS, Satish KS, Saraswathy GR, Kuri U, Vastrad SJ, Giri R, Dsouza PL, Kumar AP, Nair G. Innovative target mining stratagems to navigate drug repurposing endeavours. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:303-355. [PMID: 38789185 DOI: 10.1016/bs.pmbts.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The conventional theory linking a single gene with a particular disease and a specific drug contributes to the dwindling success rates of traditional drug discovery. This requires a substantial shift focussing on contemporary drug design or drug repurposing, which entails linking multiple genes to diverse physiological or pathological pathways and drugs. Lately, drug repurposing, the art of discovering new/unlabelled indications for existing drugs or candidates in clinical trials, is gaining attention owing to its success rates. The rate-limiting phase of this strategy lies in target identification, which is generally driven through disease-centric and/or drug-centric approaches. The disease-centric approach is based on exploration of crucial biomolecules such as genes or proteins underlying pathological cascades of the disease of interest. Investigating these pathological interplays aids in the identification of potential drug targets that can be leveraged for novel therapeutic interventions. The drug-centric approach involves various strategies such as exploring the mechanism of adverse drug reactions that can unearth potential targets, as these untoward reactions might be considered desirable therapeutic actions in other disease conditions. Currently, artificial intelligence is an emerging robust tool that can be used to translate the aforementioned intricate biological networks to render interpretable data for extracting precise molecular targets. Integration of multiple approaches, big data analytics, and clinical corroboration are essential for successful target mining. This chapter highlights the contemporary strategies steering target identification and diverse frameworks for drug repurposing. These strategies are illustrated through case studies curated from recent drug repurposing research inclined towards neurodegenerative diseases, cancer, infections, immunological, and cardiovascular disorders.
Collapse
Affiliation(s)
- Kamatchi Sundara Saravanan
- Department of Pharmacognosy, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Kshreeraja S Satish
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Ganesan Rajalekshmi Saraswathy
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India.
| | - Ushnaa Kuri
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Soujanya J Vastrad
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Ritesh Giri
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Prizvan Lawrence Dsouza
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Adusumilli Pramod Kumar
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Gouri Nair
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| |
Collapse
|
4
|
Adikusuma W, Firdayani F, Irham LM, Darmawi D, Hamidy MY, Nopitasari BL, Soraya S, Azizah N. Integrated genomic network analysis revealed potential of a druggable target for hemorrhoid treatment. Saudi Pharm J 2023; 31:101831. [PMID: 37965490 PMCID: PMC10641558 DOI: 10.1016/j.jsps.2023.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/14/2023] [Indexed: 11/16/2023] Open
Abstract
Hemorrhoids are a prevalent medical condition that necessitates effective treatment options. The current options for treatment consist of oral medications, topical applications, or surgery, yet a scarcity of highly effective drugs still exists. Genetic markers provide promising avenues for investigating the treatment of hemorrhoids, as they may reveal intricate biological mechanisms and targeted drug therapies, ultimately enhancing more precise treatment tailored to the patient. This study aims to identify new drug candidates for treating hemorrhoids through a meticulous bioinformatics approach and integrated with genomic network analysis. After extracting 21 druggable target genes using DrugBank from 293 genes connected to hemorrhoids, 87 possible drugs were selected. Three of these drugs (ketamine, methylene blue, and fulvestrant) hold potential in addressing issues associated with hemorrhoids and have been supported by clinical or preclinical studies. Eighty-four compounds present new therapeutic possibilities for managing hemorrhoids. We highlight that our findings indicate that NOX1 and NOS3 genes are promising biomarkers, with NOS3 gaining significance owing to its robust systemic functional annotations. Sapropterin, an existing drug, is closely associated with NOS3, providing a clear target for biomarker-driven interventions. This study illustrates the potential of combining genomic network analysis with bioinformatics to repurpose drugs for treating hemorrhoids. Subsequent research will explore the mechanisms for utilizing NOS3 targeting in the treatment of hemorrhoids.
Collapse
Affiliation(s)
- Wirawan Adikusuma
- Departement of Pharmacy, University of Muhammadiyah Mataram, Mataram, Indonesia
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
| | - Firdayani Firdayani
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
| | | | - Darmawi Darmawi
- Department of Histology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
- Graduate School in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Muhammad Yulis Hamidy
- Department of Pharmacology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | | | - Soraya Soraya
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Nurul Azizah
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| |
Collapse
|
5
|
Irham LM, Adikusuma W, La’ah AS, Chong R, Septama AW, Angelina M. Leveraging Genomic and Bioinformatic Analysis to Enhance Drug Repositioning for Dermatomyositis. Bioengineering (Basel) 2023; 10:890. [PMID: 37627776 PMCID: PMC10451728 DOI: 10.3390/bioengineering10080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 08/27/2023] Open
Abstract
Dermatomyositis (DM) is an autoimmune disease that is classified as a type of idiopathic inflammatory myopathy, which affects human skin and muscles. The most common clinical symptoms of DM are muscle weakness, rash, and scaly skin. There is currently no cure for DM. Genetic factors are known to play a pivotal role in DM progression, but few have utilized this information geared toward drug discovery for the disease. Here, we exploited genomic variation associated with DM and integrated this with genomic and bioinformatic analyses to discover new drug candidates. We first integrated genome-wide association study (GWAS) and phenome-wide association study (PheWAS) catalogs to identify disease-associated genomic variants. Biological risk genes for DM were prioritized using strict functional annotations, further identifying candidate drug targets based on druggable genes from databases. Overall, we analyzed 1239 variants associated with DM and obtained 43 drugs that overlapped with 13 target genes (JAK2, FCGR3B, CD4, CD3D, LCK, CD2, CD3E, FCGR3A, CD3G, IFNAR1, CD247, JAK1, IFNAR2). Six drugs clinically investigated for DM, as well as eight drugs under pre-clinical investigation, are candidate drugs that could be repositioned for DM. Further studies are necessary to validate potential biomarkers for novel DM therapeutics from our findings.
Collapse
Affiliation(s)
- Lalu Muhammad Irham
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta 55164, Indonesia
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia
| | - Wirawan Adikusuma
- Department of Pharmacy, University of Muhammadiyah Mataram, Mataram 83127, Indonesia
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia
| | - Anita Silas La’ah
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112304, Taiwan
| | - Rockie Chong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Abdi Wira Septama
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia
| | - Marissa Angelina
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia
| |
Collapse
|
6
|
Adikusuma W, Zakaria ZA, Irham LM, Nopitasari BL, Pradiningsih A, Firdayani F, Septama AW, Chong R. Transcriptomics-driven drug repositioning for the treatment of diabetic foot ulcer. Sci Rep 2023; 13:10032. [PMID: 37340026 DOI: 10.1038/s41598-023-37120-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are a common complication of diabetes and can lead to severe disability and even amputation. Despite advances in treatment, there is currently no cure for DFUs and available drugs for treatment are limited. This study aimed to identify new candidate drugs and repurpose existing drugs to treat DFUs based on transcriptomics analysis. A total of 31 differentially expressed genes (DEGs) were identified and used to prioritize the biological risk genes for DFUs. Further investigation using the database DGIdb revealed 12 druggable target genes among 50 biological DFU risk genes, corresponding to 31 drugs. Interestingly, we highlighted that two drugs (urokinase and lidocaine) are under clinical investigation for DFU and 29 drugs are potential candidates to be repurposed for DFU therapy. The top 5 potential biomarkers for DFU from our findings are IL6ST, CXCL9, IL1R1, CXCR2, and IL10. This study highlights IL1R1 as a highly promising biomarker for DFU due to its high systemic score in functional annotations, that can be targeted with an existing drug, Anakinra. Our study proposed that the integration of transcriptomic and bioinformatic-based approaches has the potential to drive drug repurposing for DFUs. Further research will further examine the mechanisms by which targeting IL1R1 can be used to treat DFU.
Collapse
Affiliation(s)
- Wirawan Adikusuma
- Borneo Research on Algesia, Inflammation, and Neurodegeneration (BRAIN) Group, Department of Biomedical Sciences, Faculty of Medicines and Health Sciences, University Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
- Departement of Pharmacy, University of Muhammadiyah Mataram, Mataram, Indonesia.
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia.
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation, and Neurodegeneration (BRAIN) Group, Department of Biomedical Sciences, Faculty of Medicines and Health Sciences, University Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Lalu Muhammad Irham
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
| | | | - Anna Pradiningsih
- Departement of Pharmacy, University of Muhammadiyah Mataram, Mataram, Indonesia
| | - Firdayani Firdayani
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
| | - Rockie Chong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| |
Collapse
|
7
|
Feng B, Zhou T, Guo Z, Jin J, Zhang S, Qiu J, Cao J, Li J, Peng X, Wang J, Xing Y, Ji R, Qiao L, Liang Y. Comprehensive analysis of immune-related genes for classification and immune microenvironment of asthma. Am J Transl Res 2023; 15:1052-1062. [PMID: 36915798 PMCID: PMC10006808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVES To determine the effects of immune-related genes (IRGs) and immune landscape of induced sputum, and develop novel, non-invasive diagnostic molecular therapeutic targets for asthma. METHODS GSE76262 datasets were used to identify differentially expressed IRGs in asthma. Key IRGs were detected using a protein-protein interaction network. Receiver operating characteristic (ROC) curves were analyzed to investigate the diagnostic value of key IRGs. Gene set enrichment analysis (GSEA) was performed with WebGestalt. Single-sample gene set enrichment analysis and CIBERSORT were used to investigate the immune landscape of induced sputum. RESULTS A total of 75 potential IRGs were associated with asthma, most of which were involved in the NF-kappa B signaling pathway. ROC analysis showed AUC values for the hub pathway ranging from 0.676-0.767, with moderate diagnostic value for asthma. We also identified IRGs-related cytokines (TNF-α, IL-1β, IL-8 and IL-6) in 76 asthma and 91 control serum samples to further explore diagnostic efficacy, showing a cumulative AUC of 0.998 for these four related cytokines. Analysis of immune cell infiltration levels showed that follicular helper T cells, activated dendritic cells, activated mast cells and eosinophils were significantly higher and macrophages M0 and macrophages M2 were significantly reduced in sputum from patients with asthma. CONCLUSIONS IRGs-related cytokines and immune infiltration may contribute to the diagnosis and immune classification of asthma.
Collapse
Affiliation(s)
- Bin Feng
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University Suzhou 215006, Jiangsu, China
| | - Tong Zhou
- Medical College of Soochow University Suzhou 215006, Jiangsu, China
| | - Zhiyi Guo
- Medical College of Soochow University Suzhou 215006, Jiangsu, China
| | - Jieyu Jin
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University Suzhou 215006, Jiangsu, China
| | - Sheng Zhang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University Suzhou 215006, Jiangsu, China
| | - Jun Qiu
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University Suzhou 215006, Jiangsu, China
| | - Jun Cao
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University Suzhou 215006, Jiangsu, China
| | - Jia Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine Shanghai 201209, China
| | - Xia Peng
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine Shanghai 201209, China
| | - Juan Wang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine Shanghai 201209, China
| | - Yanru Xing
- Basecare Medical Device Co., Ltd. Suzhou 215006, China
| | - Renxin Ji
- The School of International Medical Technology of Shanghai Sanda University Shanghai 201209, China
| | - Longwei Qiao
- Center for Reproduction and Genetics, School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University Suzhou 215006, Jiangsu, China
| | - Yuting Liang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University Suzhou 215006, Jiangsu, China
| |
Collapse
|
8
|
Faisal S, Abdelaal S, Jeraiby MA, Toaimah FHS, Kattan SW, Abdel-Gawad AR, Riad E, Toraih EA, Fawzy MS, Ibrahim A. Diagnostic and Prognostic Risk Assessment of Heat Shock Protein HSPA1B rs2763979 Gene Variant in Asthma. Genes (Basel) 2022; 13:2391. [PMID: 36553658 PMCID: PMC9778050 DOI: 10.3390/genes13122391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Given the significant role the heat shock protein Hsp70 plays in modulating cellular homeostasis in several chronic inflammatory disorders, the genetic variation of the inducible HSP70 (HSPA1B) gene may impact protein expression and disease phenotype. The HSPA1B rs2763979 variant has been associated with multiple inflammatory scenarios, but no previous studies have explored its association with asthma. In this sense, this cross-sectional study enrolled 90 children with asthma and 218 age-/sex-matched healthy volunteers for rs2763979 variant genotyping by TaqMan allelic discrimination analysis. The results were investigated under several genetic models and associated with disease susceptibility and clinicolaboratory data. Overall analysis, including the 308 participants, revealed a higher C allele frequency among patients relative to controls (43.0% vs. 33%, p = 0.006). Furthermore, patients with the C variant initially had a higher risk of asthma under heterozygous (OR = 2.75, 95%CI = 1.46-5.18, p = 0.003), homozygous (OR = 3.35, 95%CI = 1.19-9.39, p = 0.008), dominant (OR = 2.83, 95%CI = 1.52-5.25, p < 0.001), and overdominant (OR = 2.12, 95%CI = 1.20-3.74, p = 0.008) models. However, after employing a 1:1 nearest propensity matching analysis, the studied variant showed only borderline significance with asthma under the dominant model in 71 matched cohorts. Interestingly, patients who carry the rs2763979 CC genotype showed favorable spirometric parameters in terms of better (mean ± SD) forced vital capacity (86.3 ± 7.4 vs. 77.7 ± 6.1 and 75.7 ± 7.2 for CT and TT, respectively, p = 0.021), forced expiratory volume in one second before bronchodilation (60.7 ± 12.9 vs. 54.9 ± 7.6 and 56.1 ± 7.5 for CT and TT, respectively, p = 0.021), and an improvement in peak expiratory flow rate after inhaled salbutamol bronchodilator (p = 0.044) relative to the counterpart genotypes. In conclusion, the HSPA1B rs2763979 variant might have prognostic utility as a genetic marker for asthma in our population. Further larger studies on different ethnicities are recommended to validate the results.
Collapse
Affiliation(s)
- Salwa Faisal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Sherouk Abdelaal
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed A. Jeraiby
- Department of Biochemistry, Faculty of Medicine, Jazan University, Jazan 82621, Saudi Arabia
| | - Fatihi Hassan Soliman Toaimah
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Clinical Pediatrics and Clinical Emergency Medicine, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
- Department of Clinical Academic Education, College of Medicine, Qatar University, Doha 2713, Qatar
| | - Shahad W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46423, Saudi Arabia
| | | | - Eman Riad
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Medical Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Ahmed Ibrahim
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
9
|
Mugiyanto E, Adikusuma W, Irham LM, Huang WC, Chang WC, Kuo CN. Integrated genomic analysis to identify druggable targets for pancreatic cancer. Front Oncol 2022; 12:989077. [PMID: 36531045 PMCID: PMC9752886 DOI: 10.3389/fonc.2022.989077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2022] [Indexed: 03/31/2024] Open
Abstract
According to the National Comprehensive Cancer Network and the American Society of Clinical Oncology, the standard treatment for pancreatic cancer (PC) is gemcitabine and fluorouracil. Other chemotherapeutic agents have been widely combined. However, drug resistance remains a huge challenge, leading to the ineffectiveness of cancer therapy. Therefore, we are trying to discover new treatments for PC by utilizing genomic information to identify PC-associated genes as well as drug target genes for drug repurposing. Genomic information from a public database, the cBio Cancer Genomics Portal, was employed to retrieve the somatic mutation genes of PC. Five functional annotations were applied to prioritize the PC risk genes: Kyoto Encyclopedia of Genes and Genomes; biological process; knockout mouse; Gene List Automatically Derived For You; and Gene Expression Omnibus Dataset. DrugBank database was utilized to extract PC drug targets. To narrow down the most promising drugs for PC, CMap Touchstone analysis was applied. Finally, ClinicalTrials.gov and a literature review were used to screen the potential drugs under clinical and preclinical investigation. Here, we extracted 895 PC-associated genes according to the cBioPortal database and prioritized them by using five functional annotations; 318 genes were assigned as biological PC risk genes. Further, 216 genes were druggable according to the DrugBank database. CMap Touchstone analysis indicated 13 candidate drugs for PC. Among those 13 drugs, 8 drugs are in the clinical trials, 2 drugs were supported by the preclinical studies, and 3 drugs are with no evidence status for PC. Importantly, we found that midostaurin (targeted PRKA) and fulvestrant (targeted ESR1) are promising candidate drugs for PC treatment based on the genomic-driven drug repurposing pipelines. In short, integrated analysis using a genomic information database demonstrated the viability for drug repurposing. We proposed two drugs (midostaurin and fulvestrant) as promising drugs for PC.
Collapse
Affiliation(s)
- Eko Mugiyanto
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Faculty of Health Science, University of Muhammadiyah Pekajangan Pekalongan, Pekalongan, Indonesia
| | - Wirawan Adikusuma
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Faculty of Health Science, University of Muhammadiyah Mataram, Mataram, Indonesia
| | | | - Wan-Chen Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wei-Chiao Chang
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Integrative Research Center for Critical Care, Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Nan Kuo
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Genomic variants-driven drug repurposing for tuberculosis by utilizing the established bioinformatic-based approach. Biochem Biophys Rep 2022; 32:101334. [PMID: 36090591 PMCID: PMC9449755 DOI: 10.1016/j.bbrep.2022.101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
A major challenge in translating genomic variants of Tuberculosis (TB) into clinical implementation is to integrate the disease-associated variants and facilitate drug discovery through the concept of genomic-driven drug repurposing. Here, we utilized two established genomic databases, namely a Genome-Wide Association Study (GWAS) and a Phenome-Wide Association Study (PheWAS) to identify the genomic variants associated with TB disease and further utilize them for drug-targeted genes. We evaluated 3.425 genomic variants associated with TB disease which overlapped with 200 TB-associated genes. To prioritize the biological TB risk genes, we devised an in-silico pipeline and leveraged an established bioinformatics method based on six functional annotations (missense mutation, cis-eQTL, biological process, cellular component, molecular function, and KEGG molecular pathway analysis). Interestingly, based on the six functional annotations that we applied, we discovered that 14 biological TB risk genes are strongly linked to the deregulation of the biological TB risk genes. Hence, we demonstrated that 12 drug target genes overlapped with 40 drugs for other indications and further suggested that the drugs may be repurposed for the treatment of TB. We highlighted that CD44, CCR5, CXCR4, and C3 are highly promising proposed TB targets since they are connected to SELP and HLA-B, which are biological TB risk genes with high systemic scores on functional annotations. In sum, the current study shed light on the genomic variants involved in TB pathogenesis as the biological TB risk genes and provided empirical evidence that the genomics of TB may contribute to drug discovery. The feasibility of utilizing genomic variants to facilitate drug repurposing for Tuberculosis. Genomic information can be effectively used for drug discovery and treatment through genomic-based therapies. Findings from our research support the possibility of drug repurposing for Tuberculosis based on genomic variations.
Collapse
|
11
|
Afief AR, Irham LM, Adikusuma W, Perwitasari DA, Brahmadhi A, Chong R. Integration of genomic variants and bioinformatic-based approach to drive drug repurposing for multiple sclerosis. Biochem Biophys Rep 2022; 32:101337. [PMID: 36105612 PMCID: PMC9464879 DOI: 10.1016/j.bbrep.2022.101337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 01/04/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease in the central nervous system (CNS) marked by inflammation, demyelination, and axonal loss. Currently available MS medication is limited, thereby calling for a strategy to accelerate new drug discovery. One of the strategies to discover new drugs is to utilize old drugs for new indications, an approach known as drug repurposing. Herein, we first identified 421 MS-associated SNPs from the Genome-Wide Association Study (GWAS) catalog (p-value < 5 × 10-8), and a total of 427 risk genes associated with MS using HaploReg version 4.1 under the criterion r 2 > 0.8. MS risk genes were then prioritized using bioinformatics analysis to identify biological MS risk genes. The prioritization was performed based on six defined categories of functional annotations, namely missense mutation, cis-expression quantitative trait locus (cis-eQTL), molecular pathway analysis, protein-protein interaction (PPI), genes overlap with knockout mouse phenotype, and primary immunodeficiency (PID). A total of 144 biological MS risk genes were found and mapped into 194 genes within an expanded PPI network. According to the DrugBank and the Therapeutic Target Database, 27 genes within the list targeted by 68 new candidate drugs were identified. Importantly, the power of our approach is confirmed with the identification of a known approved drug (dimethyl fumarate) for MS. Based on additional data from ClinicalTrials.gov, eight drugs targeting eight distinct genes are prioritized with clinical evidence for MS disease treatment. Notably, CD80 and CD86 pathways are promising targets for MS drug repurposing. Using in silico drug repurposing, we identified belatacept as a promising MS drug candidate. Overall, this study emphasized the integration of functional genomic variants and bioinformatic-based approach that reveal important biological insights for MS and drive drug repurposing efforts for the treatment of this devastating disease.
Collapse
Key Words
- ARE, Antioxidant Response Element
- ASN, Asian
- Autoimmune disease
- Bioinformatics
- CNS, Central Nervous System
- Drug repurposing
- FDA, Food and Drug Administration
- FDR, False Discovery Rate
- GO, Gene Ontology
- GWAS, Genome-Wide Association Study
- Genomic variants
- HLA, Human Leukocyte Antigen
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MP, Mammalian Phenotype
- MS, Multiple Sclerosis
- Multiple sclerosis
- PID, Primary Immuno-deficiency
- PPI, Protein-Protein Interaction
- SNP, Single Nucleotide Polymorphism
- cis-eQTL, cis-expression Quantitative Trait Locus
Collapse
Affiliation(s)
| | | | - Wirawan Adikusuma
- Department of Pharmacy, University of Muhammadiyah Mataram, Mataram, Indonesia
| | | | - Ageng Brahmadhi
- Faculty of Medicine, Universitas Muhammadiyah Purwokerto, Purwokerto, Central Java, Indonesia
| | - Rockie Chong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| |
Collapse
|
12
|
Santri IN, Irham LM, Djalilah GN, Perwitasari DA, Wardani Y, Phiri YVA, Adikusuma W. Identification of Hub Genes and Potential Biomarkers for Childhood Asthma by Utilizing an Established Bioinformatic Analysis Approach. Biomedicines 2022; 10:biomedicines10092311. [PMID: 36140412 PMCID: PMC9496621 DOI: 10.3390/biomedicines10092311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Childhood asthma represents a heterogeneous disease resulting from the interaction between genetic factors and environmental exposures. Currently, finding reliable biomarkers is necessary for the clinical management of childhood asthma. However, only a few biomarkers are being used in clinical practice in the pediatric population. In the long run, new biomarkers for asthma in children are required and would help direct therapy approaches. This study aims to identify potential childhood asthma biomarkers using a genetic-driven biomarkers approach. Herein, childhood asthma-associated Single Nucleotide Polymorphisms (SNPs) were utilized from the GWAS database to drive and facilitate the biomarker of childhood asthma. We uncovered 466 childhood asthma-associated loci by extending to proximal SNPs based on r2 > 0.8 in Asian populations and utilizing HaploReg version 4.1 to determine 393 childhood asthma risk genes. Next, the functional roles of these genes were subsequently investigated using Gene Ontology (GO) term enrichment analysis, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and a protein−protein interaction (PPI) network. MCODE and CytoHubba are two Cytoscape plugins utilized to find biomarker genes from functional networks created using childhood asthma risk genes. Intriguingly, 10 hub genes (IL6, IL4, IL2, IL13, PTPRC, IL5, IL33, TBX21, IL2RA, and STAT6) were successfully identified and may have been identified to play a potential role in the pathogenesis of childhood asthma. Among 10 hub genes, we strongly suggest IL6 and IL4 as prospective childhood asthma biomarkers since both of these biomarkers achieved a high systemic score in Cytohubba’s MCC algorithm. In summary, this study offers a valuable genetic-driven biomarker approach to facilitate the potential biomarkers for asthma in children.
Collapse
Affiliation(s)
| | | | | | | | - Yuniar Wardani
- Faculty of Public Health, Universitas Ahmad Dahlan, Yogyakarta 55164, Indonesia
| | - Yohane Vincent Abero Phiri
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
- Institute for Health Research and Communication (IHRC), Lilongwe P.O. Box 1958, Malawi
| | - Wirawan Adikusuma
- Departement of Pharmacy, University of Muhammadiyah Mataram, Mataram 83127, Indonesia
- Correspondence: (W.A.)
| |
Collapse
|
13
|
Lesmana MHS, Le NQK, Chiu WC, Chung KH, Wang CY, Irham LM, Chung MH. Genomic-Analysis-Oriented Drug Repurposing in the Search for Novel Antidepressants. Biomedicines 2022; 10:biomedicines10081947. [PMID: 36009493 PMCID: PMC9405592 DOI: 10.3390/biomedicines10081947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
From inadequate prior antidepressants that targeted monoamine neurotransmitter systems emerged the discovery of alternative drugs for depression. For instance, drugs targeted interleukin 6 receptor (IL6R) in inflammatory system. Genomic analysis-based drug repurposing using single nucleotide polymorphism (SNP) inclined a promising method for several diseases. However, none of the diseases was depression. Thus, we aimed to identify drug repurposing candidates for depression treatment by adopting a genomic-analysis-based approach. The 5885 SNPs obtained from the machine learning approach were annotated using HaploReg v4.1. Five sets of functional annotations were applied to determine the depression risk genes. The STRING database was used to expand the target genes and identify drug candidates from the DrugBank database. We validated the findings using the ClinicalTrial.gov and PubMed databases. Seven genes were observed to be strongly associated with depression (functional annotation score = 4). Interestingly, IL6R was auspicious as a target gene according to the validation outcome. We identified 20 drugs that were undergoing preclinical studies or clinical trials for depression. In addition, we identified sarilumab and satralizumab as drugs that exhibit strong potential for use in the treatment of depression. Our findings indicate that a genomic-analysis-based approach can facilitate the discovery of drugs that can be repurposed for treating depression.
Collapse
Affiliation(s)
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Wei-Che Chiu
- Department of Psychiatry, Cathay General Hospital, Taipei 10630, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Kuo-Hsuan Chung
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Psychiatry and Psychiatric Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Lalu Muhammad Irham
- Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta 55164, Indonesia
- Correspondence: (L.M.I.); (M.-H.C.); Tel.: +62-851-322-55-414 (L.M.I.); +886-02-2736-1661 (M.-H.C.)
| | - Min-Huey Chung
- School of Nursing, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan
- Department of Nursing, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: (L.M.I.); (M.-H.C.); Tel.: +62-851-322-55-414 (L.M.I.); +886-02-2736-1661 (M.-H.C.)
| |
Collapse
|
14
|
Watchorn D, Menzies-Gow A. Investigational approaches for unmet need in severe asthma. Expert Rev Respir Med 2022; 16:661-678. [PMID: 35786146 DOI: 10.1080/17476348.2022.2096593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Molecular antibodies (mAb) targeting inflammatory mediators are effective in T2-high asthma. The recent approval of Tezepelumab presents a novel mAb therapeutic option for those with T2-low asthma. AREAS COVERED We discuss a number of clinical problems pertinent to severe asthma that are less responsive to current therapies, such as persistent airflow obstruction and airway hyperresponsiveness. We discuss selected investigational approaches, including a number of candidate therapies under investigation in two adaptive platform trials currently in progress, with particular reference to this unmet need, as well as their potential in phenotypes such as neutrophilic asthma and obese asthma, which may or may not overlap with a T2-high phenotype. EXPERT OPINION The application of discrete targeting approaches to T2-low molecular phenotypes, including those phenotypes in which inflammation may not arise within the airway, has yielded variable results to date. Endotypes associated with T2-low asthma are likely to be diverse but await validation. Investigational therapeutic approaches must, likewise, be diverse if the goal of remission is to become attainable for all those living with asthma.
Collapse
Affiliation(s)
- David Watchorn
- Lung Division, Royal Brompton & Harefield Hospitals,London,UK
| | | |
Collapse
|
15
|
Ooka T, Zhu Z, Liang L, Celedon JC, Harmon B, Hahn A, Rhee EP, Freishtat RJ, Camargo CA, Hasegawa K. Integrative genetics-metabolomics analysis of infant bronchiolitis-childhood asthma link: A multicenter prospective study. Front Immunol 2022; 13:1111723. [PMID: 36818476 PMCID: PMC9936313 DOI: 10.3389/fimmu.2022.1111723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Background Infants with bronchiolitis are at high risk for developing childhood asthma. While genome-wide association studies suggest common genetic susceptibilities between these conditions, the mechanisms underlying the link remain unclear. Objective Through integrated genetics-metabolomics analysis in this high-risk population, we sought to identify genetically driven metabolites associated with asthma development and genetic loci associated with both these metabolites and asthma susceptibility. Methods In a multicenter prospective cohort study of infants hospitalized for bronchiolitis, we profiled the nasopharyngeal metabolome and genotyped the whole genome at hospitalization. We identified asthma-related metabolites from 283 measured compounds and conducted metabolite quantitative trait loci (mtQTL) analyses. We further examined the mtQTL associations by testing shared genetic loci for metabolites and asthma using colocalization analysis and the concordance between the loci and known asthma-susceptibility genes. Results In 744 infants hospitalized with bronchiolitis, 28 metabolites (e.g., docosapentaenoate [DPA], 1,2-dioleoyl-sn-glycero-3-phosphoglycerol, sphingomyelin) were associated with asthma risk. A total of 349 loci were associated with these metabolites-161 for non-Hispanic white, 120 for non-Hispanic black, and 68 for Hispanics. Of these, there was evidence for 30 shared loci between 16 metabolites and asthma risk (colocalization posterior probability ≥0.5). The significant SNPs within loci were aligned with known asthma-susceptibility genes (e.g., ADORA1, MUC16). Conclusion The integrated genetics-metabolomics analysis identified genetically driven metabolites during infancy that are associated with asthma development and genetic loci associated with both these metabolites and asthma susceptibility. Identifying these metabolites and genetic loci should advance research into the functional mechanisms of the infant bronchiolitis-childhood asthma link.
Collapse
Affiliation(s)
- Tadao Ooka
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Health Science, University of Yamanashi, Chuo, Yamanashi, Japan
- *Correspondence: Tadao Ooka,
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Juan C. Celedon
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Division of Infectious Diseases, Children’s National Hospital, Washington, DC, United States
| | - Eugene P. Rhee
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert J. Freishtat
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Division of Emergency Medicine, Children’s National Hospital, Washington, DC, United States
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|