1
|
Lanzillotta C, Tramutola A, Lanzillotta S, Greco V, Pagnotta S, Sanchini C, Di Angelantonio S, Forte E, Rinaldo S, Paone A, Cutruzzolà F, Cimini FA, Barchetta I, Cavallo MG, Urbani A, Butterfield DA, Di Domenico F, Paul BD, Perluigi M, Duarte JMN, Barone E. Biliverdin Reductase-A integrates insulin signaling with mitochondrial metabolism through phosphorylation of GSK3β. Redox Biol 2024; 73:103221. [PMID: 38843768 PMCID: PMC11190564 DOI: 10.1016/j.redox.2024.103221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Brain insulin resistance links the failure of energy metabolism with cognitive decline in both type 2 Diabetes Mellitus (T2D) and Alzheimer's disease (AD), although the molecular changes preceding overt brain insulin resistance remain unexplored. Abnormal biliverdin reductase-A (BVR-A) levels were observed in both T2D and AD and were associated with insulin resistance. Here, we demonstrate that reduced BVR-A levels alter insulin signaling and mitochondrial bioenergetics in the brain. Loss of BVR-A leads to IRS1 hyper-activation but dysregulates Akt-GSK3β complex in response to insulin, hindering the accumulation of pGSK3βS9 into the mitochondria. This event impairs oxidative phosphorylation and fosters the activation of the mitochondrial Unfolded Protein Response (UPRmt). Remarkably, we unveil that BVR-A is required to shuttle pGSK3βS9 into the mitochondria. Our data sheds light on the intricate interplay between insulin signaling and mitochondrial metabolism in the brain unraveling potential targets for mitigating the development of brain insulin resistance and neurodegeneration.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Simona Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Viviana Greco
- Department of Basic Biotechnology, Perioperative and Intensive Clinics, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, L.go F.Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A.Gemelli 8, 00168, Rome, Italy
| | - Sara Pagnotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Caterina Sanchini
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Silvia Di Angelantonio
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | | | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | | | - Andrea Urbani
- Department of Basic Biotechnology, Perioperative and Intensive Clinics, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, L.go F.Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A.Gemelli 8, 00168, Rome, Italy
| | - D Allan Butterfield
- Sanders-Brown Center on Aging, Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Joao M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy.
| |
Collapse
|
2
|
Sanz FJ, Martínez-Carrión G, Solana-Manrique C, Paricio N. Evaluation of type 1 diabetes mellitus as a risk factor of Parkinson's disease in a Drosophila model. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:697-705. [PMID: 37381093 DOI: 10.1002/jez.2726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by high blood glucose levels, resulting from insulin dysregulation. Parkinson's disease (PD) is the most common neurodegenerative motor disorder caused by the selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta. DM and PD are both age-associated diseases that are turning into epidemics worldwide. Previous studies have indicated that type 2 DM might be a risk factor of developing PD. However, scarce information about the link between type 1 DM (T1DM) and PD does exist. In this work, we have generated a Drosophila model of T1DM based on insulin deficiency to evaluate if T1DM could be a risk factor to trigger PD onset. As expected, model flies exhibited T1DM-related phenotypes such as insulin deficiency, increased content of carbohydrates and glycogen, and reduced activity of insulin signaling. Interestingly, our results also demonstrated that T1DM model flies presented locomotor defects as well as reduced levels of tyrosine hydroxylase (a marker of DA neurons) in brains, which are typical PD-related phenotypes. In addition, T1DM model flies showed elevated oxidative stress levels, which could be causative of DA neurodegeneration. Therefore, our results indicate that T1DM might be a risk factor of developing PD, and encourage further studies to shed light into the exact link between both diseases.
Collapse
Affiliation(s)
- Francisco José Sanz
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| | - Guillermo Martínez-Carrión
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Europea de Valencia, Valencia, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| |
Collapse
|
3
|
Henn RE, Noureldein MH, Elzinga SE, Kim B, Savelieff MG, Feldman EL. Glial-neuron crosstalk in health and disease: A focus on metabolism, obesity, and cognitive impairment. Neurobiol Dis 2022; 170:105766. [PMID: 35584728 PMCID: PMC10071699 DOI: 10.1016/j.nbd.2022.105766] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Dementia is a complex set of disorders affecting normal cognitive function. Recently, several clinical studies have shown that diabetes, obesity, and components of the metabolic syndrome (MetS) are associated with cognitive impairment, including dementias such as Alzheimer's disease. Maintaining normal cognitive function is an intricate process involving coordination of neuron function with multiple brain glia. Well-orchestrated bioenergetics is a central requirement of neurons, which need large amounts of energy but lack significant energy storage capacity. Thus, one of the most important glial functions is to provide metabolic support and ensure an adequate energy supply for neurons. Obesity and metabolic disease dysregulate glial function, leading to a failure to respond to neuron energy demands, which results in neuronal damage. In this review, we outline evidence for links between diabetes, obesity, and MetS components to cognitive impairment. Next, we focus on the metabolic crosstalk between the three major glial cell types, oligodendrocytes, astrocytes, and microglia, with neurons under physiological conditions. Finally, we outline how diabetes, obesity, and MetS components can disrupt glial function, and how this disruption might impair glia-neuron metabolic crosstalk and ultimately promote cognitive impairment.
Collapse
Affiliation(s)
- Rosemary E Henn
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Mohamed H Noureldein
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Sarah E Elzinga
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Bhumsoo Kim
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America.
| | - Eva L Feldman
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|