1
|
Posa A. Spike protein-related proteinopathies: A focus on the neurological side of spikeopathies. Ann Anat 2025; 260:152662. [PMID: 40254264 DOI: 10.1016/j.aanat.2025.152662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND The spike protein (SP) is an outward-projecting transmembrane glycoprotein on viral surfaces. SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), responsible for COVID-19 (Coronavirus Disease 2019), uses SP to infect cells that express angiotensin converting enzyme 2 (ACE2) on their membrane. Remarkably, SP has the ability to cross the blood-brain barrier (BBB) into the brain and cause cerebral damage through various pathomechanisms. To combat the COVID-19 pandemic, novel gene-based products have been used worldwide to induce human body cells to produce SP to stimulate the immune system. This artificial SP also has a harmful effect on the human nervous system. STUDY DESIGN Narrative review. OBJECTIVE This narrative review presents the crucial role of SP in neurological complaints after SARS-CoV-2 infection, but also of SP derived from novel gene-based anti-SARS-CoV-2 products (ASP). METHODS Literature searches using broad terms such as "SARS-CoV-2", "spike protein", "COVID-19", "COVID-19 pandemic", "vaccines", "COVID-19 vaccines", "post-vaccination syndrome", "post-COVID-19 vaccination syndrome" and "proteinopathy" were performed using PubMed. Google Scholar was used to search for topic-specific full-text keywords. CONCLUSIONS The toxic properties of SP presented in this review provide a good explanation for many of the neurological symptoms following SARS-CoV-2 infection and after injection of SP-producing ASP. Both SP entities (from infection and injection) interfere, among others, with ACE2 and act on different cells, tissues and organs. Both SPs are able to cross the BBB and can trigger acute and chronic neurological complaints. Such SP-associated pathologies (spikeopathies) are further neurological proteinopathies with thrombogenic, neurotoxic, neuroinflammatory and neurodegenerative potential for the human nervous system, particularly the central nervous system. The potential neurotoxicity of SP from ASP needs to be critically examined, as ASPs have been administered to millions of people worldwide.
Collapse
Affiliation(s)
- Andreas Posa
- University Clinics and Outpatient Clinics for Radiology, Neuroradiology and Neurology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, Halle 06120, Germany.
| |
Collapse
|
2
|
Zimina TM, Sitkov NO, Gareev KG, Mikhailova NV, Combs SE, Shevtsov MA. Hybrid-integrated devices for mimicking malignant brain tumors ("tumor-on-a-chip") for in vitro development of targeted drug delivery and personalized therapy approaches. Front Med (Lausanne) 2024; 11:1452298. [PMID: 39629230 PMCID: PMC11611596 DOI: 10.3389/fmed.2024.1452298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Acute and requiring attention problem of oncotheranostics is a necessity for the urgent development of operative and precise diagnostics methods, followed by efficient therapy, to significantly reduce disability and mortality of citizens. A perspective way to achieve efficient personalized treatment is to use methods for operative evaluation of the individual drug load, properties of specific tumors and the effectiveness of selected therapy, and other actual features of pathology. Among the vast diversity of tumor types-brain tumors are the most invasive and malignant in humans with poor survival after diagnosis. Among brain tumors glioblastoma shows exceptionally high mortality. More studies are urgently needed to understand the risk factors and improve therapy approaches. One of the actively developing approaches is the tumor-on-a-chip (ToC) concept. This review examines the achievements of recent years in the field of ToC system developments. The basics of microfluidic chips technologies are considered in the context of their applications in solving oncological problems. Then the basic principles of tumors cultivation are considered to evaluate the main challengers in implementation of microfluidic devices, for growing cell cultures and possibilities of their treatment and observation. The main achievements in the culture types diversity approaches and their advantages are being analyzed. The modeling of angiogenesis and blood-brain barrier (BBB) on a chip, being a principally important elements of the life system, were considered in detail. The most interesting examples and achievements in the field of tumor-on-a-chip developments have been presented.
Collapse
Affiliation(s)
- Tatiana M. Zimina
- Department of Micro and Nanoelectronics, St. Petersburg Electrotechnical University “LETI” (ETU), Saint Petersburg, Russia
| | - Nikita O. Sitkov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Kamil G. Gareev
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Natalia V. Mikhailova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Stephanie E. Combs
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maxim A. Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Valkai S, Petrovszki D, Fáskerti Z, Baumgärtner M, Biczók B, Dakos K, Dósa K, Kirner BB, Kocsis AE, Nagy K, Andó I, Dér A. Optical Interferometric Device for Rapid and Specific Detection of Biological Cells. BIOSENSORS 2024; 14:421. [PMID: 39329796 PMCID: PMC11430435 DOI: 10.3390/bios14090421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Here, we report a rapid and accurate optical method for detecting cells from liquid samples in a label-free manner. The working principle of the method is based on the interference of parts of a conical laser beam, coming from a single-mode optical fiber directly, and reflected from a flat glass surface. The glass is functionalized by antibodies against the cells to be detected from the liquid sample. Cells bound to that surface modify the reflected beam, and hence, change the resulting interference pattern, too. By registering and interpreting the variation in the image, the presence of cells from the sample can be detected. As for a demonstration, cell suspensions from a U937 cell line were used in glass chambers functionalized by antibodies (TMG6-5 (mIgG1)) to which the cells specifically bind. The limit of detection (LOD) of the method was also estimated. This proof-of-concept setup offers a cost-effective and easy-to-use way of rapid and specific detection of any type of cells (including pathogens) from suspensions (e.g., body fluids). The possible portability of the device predicts its applicability as a rapid test in clinical diagnostics.
Collapse
Affiliation(s)
- Sándor Valkai
- Hungarian Research Network, Biological Research Centre, Institute of Biophysics, 6726 Szeged, Hungary
| | - Dániel Petrovszki
- Hungarian Research Network, Biological Research Centre, Institute of Biophysics, 6726 Szeged, Hungary
| | - Zsombor Fáskerti
- Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | | | - Brigitta Biczók
- Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Kira Dakos
- Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Kevin Dósa
- Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Berill B Kirner
- Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Anna E Kocsis
- Hungarian Research Network, Biological Research Centre, Institute of Biophysics, 6726 Szeged, Hungary
| | - Krisztina Nagy
- Hungarian Research Network, Biological Research Centre, Institute of Biophysics, 6726 Szeged, Hungary
| | - István Andó
- Hungarian Research Network, Biological Research Centre, Institute of Genetics, 6726 Szeged, Hungary
| | - András Dér
- Hungarian Research Network, Biological Research Centre, Institute of Biophysics, 6726 Szeged, Hungary
| |
Collapse
|
4
|
Stoia D, De Sio L, Petronella F, Focsan M. Recent advances towards point-of-care devices for fungal detection: Emphasizing the role of plasmonic nanomaterials in current and future technologies. Biosens Bioelectron 2024; 255:116243. [PMID: 38547645 DOI: 10.1016/j.bios.2024.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Fungal infections are a significant global health problem, particularly affecting individuals with weakened immune systems. Moreover, as uncontrolled antibiotic and immunosuppressant use increases continuously, fungal infections have seen a dramatic increase, with some strains developing antibiotic resistance. Traditional approaches to identifying fungal strains often rely on morphological characteristics, thus owning limitations, such as struggles in identifying several strains or distinguishing between fungal strains with similar morphologies. This review explores the multifaceted impact of fungi infections on individuals, healthcare providers, and society, highlighting the often-underestimated economic burden and healthcare implications of these infections. In light of the serious constraints of traditional fungal identification methods, this review discusses the potential of plasmonic nanoparticle-based biosensors for fungal infection identification. These biosensors can enable rapid and precise fungal pathogen detection by exploiting several readout approaches, including various spectroscopic techniques, colorimetric and electrochemical assays, as well as lateral-flow immunoassay methods. Moreover, we report the remarkable impact of plasmonic Lab on a Chip technology and microfluidic devices, as they recently emerged as a class of advanced biosensors. Finally, we provide an overview of smartphone-based Point-of-Care devices and the associated technologies developed for detecting and identifying fungal pathogens.
Collapse
Affiliation(s)
- Daria Stoia
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Francesca Petronella
- National Research Council of Italy, Institute of Crystallography CNR-IC, Area della Ricerca Roma 1 Strada Provinciale 35d, n. 9, 00010, Montelibretti (RM), Italy.
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania.
| |
Collapse
|
5
|
Pandey S, Bapat V, Abraham JN, Abraham NM. Long COVID: From olfactory dysfunctions to viral Parkinsonism. World J Otorhinolaryngol Head Neck Surg 2024; 10:137-147. [PMID: 38855289 PMCID: PMC11156689 DOI: 10.1002/wjo2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 06/11/2024] Open
Abstract
Neurological and psychiatric complications continue to be a public health concern in long coronavirus disease 2019 (COVID-19). This varies from olfactory dysfunctions such as parosmia to cognitive and emotional challenges. Historically, the surge of neurological disorders followed the viral pandemics, for example, the emergence of Encephalitis Lethargica after the outbreak of Spanish Influenza. During and after COVID-19 infection, the problems associated with the sense of smell and the reports of affected olfactory and limbic brain areas are leading to a growing concern about the similarity with the symptoms and the pattern of degeneration observed at the onset of Parkinson's disease and Alzheimer's disease. These reports reveal the essentiality of long-term studies of olfactory and cognitive functions in the post-COVID era and the experiments using animal models to dissect the neural basis of these complications. In this manuscript, we summarize the research reporting the potential correlation between neurological disorders and viral pandemic outbreaks with a historical perspective. Further, we discuss the studies providing evidence of neurodegeneration due to severe acute respiratory syndrome coronavirus 2 infection by focusing on viral Parkinsonism.
Collapse
Affiliation(s)
- Sanyukta Pandey
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| | - Vibha Bapat
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| | - Jancy Nixon Abraham
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
- Department of Life Sciences, Centre of Excellence in EpigeneticsShiv Nadar Institution of EminenceGautam Buddha NagarUttar PradeshIndia
| | - Nixon M. Abraham
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| |
Collapse
|
6
|
Wang W, Yellamsetty A, Edmonds RM, Barcavage SR, Bao S. COVID-19 vaccination-related tinnitus is associated with pre-vaccination metabolic disorders. Front Pharmacol 2024; 15:1374320. [PMID: 38841369 PMCID: PMC11150672 DOI: 10.3389/fphar.2024.1374320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Cases of tinnitus have been reported following administration of COVID-19 vaccines. The aim of this study was to characterize COVID-19 vaccination-related tinnitus to assess whether there is a causal relationship, and to examine potential risk factors for COVID-19 vaccination-related tinnitus. We analyzed a survey on 398 cases of COVID-19 vaccination-related tinnitus, and 699,839 COVID-19 vaccine-related reports in the Vaccine Adverse Effect Reporting System (VAERS) database that was retrieved on 4 December 2021. We found that following COVID-19 vaccination, 1) tinnitus report frequencies for Pfizer, Moderna and Janssen vaccines in VAERS are 47, 51 and 70 cases per million full vaccination; 2) the symptom onset was often rapid; 3) more women than men reported tinnitus and the sex difference increased with age; 4) for 2-dose vaccines, the frequency of tinnitus was higher following the first dose than the second dose; 5) for 2-dose vaccines, the chance of worsening tinnitus symptoms after second dose was approximately 50%; 6) tinnitus was correlated with other neurological and psychiatric symptoms; 7) pre-existing metabolic syndromes were correlated with the severity of the reported tinnitus. These findings suggest that COVID-19 vaccination increases the risk of tinnitus, and metabolic disorders is a risk factor for COVID-19 vaccination-related tinnitus.
Collapse
Affiliation(s)
- Weihua Wang
- Department of Physiology and Department of Otolaryngology—Head and Neck Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Anusha Yellamsetty
- Department of Audiology, College of Health and Human Sciences, San José State University, San José, CA, United States
| | | | | | - Shaowen Bao
- Department of Physiology and Department of Otolaryngology—Head and Neck Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
7
|
Martinez TE, Mayilsamy K, Mohapatra SS, Mohapatra S. Modulation of Paracellular Permeability in SARS-CoV-2 Blood-to-Brain Transcytosis. Viruses 2024; 16:785. [PMID: 38793666 PMCID: PMC11126142 DOI: 10.3390/v16050785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
SARS-CoV-2 primarily infects the lungs via the ACE2 receptor but also other organs including the kidneys, the gastrointestinal tract, the heart, and the skin. SARS-CoV-2 also infects the brain, but the hematogenous route of viral entry to the brain is still not fully characterized. Understanding how SARS-CoV-2 traverses the blood-brain barrier (BBB) as well as how it affects the molecular functions of the BBB are unclear. In this study, we investigated the roles of the receptors ACE2 and DPP4 in the SARS-CoV-2 infection of the discrete cellular components of a transwell BBB model comprising HUVECs, astrocytes, and pericytes. Our results demonstrate that direct infection on the BBB model does not modulate paracellular permeability. Also, our results show that SARS-CoV-2 utilizes clathrin and caveolin-mediated endocytosis to traverse the BBB, resulting in the direct infection of the brain side of the BBB model with a minimal endothelial infection. In conclusion, the BBB is susceptible to SARS-CoV-2 infection in multiple ways, including the direct infection of endothelium, astrocytes, and pericytes involving ACE2 and/or DPP4 and the blood-to-brain transcytosis, which is an event that does not require the presence of host receptors.
Collapse
Affiliation(s)
- Taylor E. Martinez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (T.E.M.); (K.M.)
- James A Haley VA Hospital, Tampa, FL 33612, USA;
| | - Karthick Mayilsamy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (T.E.M.); (K.M.)
- James A Haley VA Hospital, Tampa, FL 33612, USA;
| | - Shyam S. Mohapatra
- James A Haley VA Hospital, Tampa, FL 33612, USA;
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (T.E.M.); (K.M.)
- James A Haley VA Hospital, Tampa, FL 33612, USA;
| |
Collapse
|
8
|
Ahn W, Burnett FN, Pandey A, Ghoshal P, Singla B, Simon AB, Derella CC, A. Addo S, Harris RA, Lucas R, Csányi G. SARS-CoV-2 Spike Protein Stimulates Macropinocytosis in Murine and Human Macrophages via PKC-NADPH Oxidase Signaling. Antioxidants (Basel) 2024; 13:175. [PMID: 38397773 PMCID: PMC10885885 DOI: 10.3390/antiox13020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While recent studies have demonstrated that SARS-CoV-2 may enter kidney and colon epithelial cells by inducing receptor-independent macropinocytosis, it remains unknown whether this process also occurs in cell types directly relevant to SARS-CoV-2-associated lung pneumonia, such as alveolar epithelial cells and macrophages. The goal of our study was to investigate the ability of SARS-CoV-2 spike protein subunits to stimulate macropinocytosis in human alveolar epithelial cells and primary human and murine macrophages. Flow cytometry analysis of fluid-phase marker internalization demonstrated that SARS-CoV-2 spike protein subunits S1, the receptor-binding domain (RBD) of S1, and S2 stimulate macropinocytosis in both human and murine macrophages in an angiotensin-converting enzyme 2 (ACE2)-independent manner. Pharmacological and genetic inhibition of macropinocytosis substantially decreased spike-protein-induced fluid-phase marker internalization in macrophages both in vitro and in vivo. High-resolution scanning electron microscopy (SEM) imaging confirmed that spike protein subunits promote the formation of membrane ruffles on the dorsal surface of macrophages. Mechanistic studies demonstrated that SARS-CoV-2 spike protein stimulated macropinocytosis via NADPH oxidase 2 (Nox2)-derived reactive oxygen species (ROS) generation. In addition, inhibition of protein kinase C (PKC) and phosphoinositide 3-kinase (PI3K) in macrophages blocked SARS-CoV-2 spike-protein-induced macropinocytosis. To our knowledge, these results demonstrate for the first time that SARS-CoV-2 spike protein subunits stimulate macropinocytosis in macrophages. These results may contribute to a better understanding of SARS-CoV-2 infection and COVID-19 pathogenesis.
Collapse
Affiliation(s)
- WonMo Ahn
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Faith N. Burnett
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Ajay Pandey
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Pushpankur Ghoshal
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Bhupesh Singla
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Abigayle B. Simon
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (C.C.D.); (R.A.H.)
| | - Cassandra C. Derella
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (C.C.D.); (R.A.H.)
| | - Stephen A. Addo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Ryan A. Harris
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (C.C.D.); (R.A.H.)
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Gábor Csányi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
9
|
Mercado G, Kaeufer C, Richter F, Peelaerts W. Infections in the Etiology of Parkinson's Disease and Synucleinopathies: A Renewed Perspective, Mechanistic Insights, and Therapeutic Implications. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1301-1329. [PMID: 39331109 PMCID: PMC11492057 DOI: 10.3233/jpd-240195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Increasing evidence suggests a potential role for infectious pathogens in the etiology of synucleinopathies, a group of age-related neurodegenerative disorders including Parkinson's disease (PD), multiple system atrophy and dementia with Lewy bodies. In this review, we discuss the link between infections and synucleinopathies from a historical perspective, present emerging evidence that supports this link, and address current research challenges with a focus on neuroinflammation. Infectious pathogens can elicit a neuroinflammatory response and modulate genetic risk in PD and related synucleinopathies. The mechanisms of how infections might be linked with synucleinopathies as well as the overlap between the immune cellular pathways affected by virulent pathogens and disease-related genetic risk factors are discussed. Here, an important role for α-synuclein in the immune response against infections is emerging. Critical methodological and knowledge gaps are addressed, and we provide new future perspectives on how to address these gaps. Understanding how infections and neuroinflammation influence synucleinopathies will be essential for the development of early diagnostic tools and novel therapies.
Collapse
Affiliation(s)
- Gabriela Mercado
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Kaeufer
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wouter Peelaerts
- Laboratory for Virology and Gene Therapy, Department of Pharmacy and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Hashimoto K. Detrimental effects of COVID-19 in the brain and therapeutic options for long COVID: The role of Epstein-Barr virus and the gut-brain axis. Mol Psychiatry 2023; 28:4968-4976. [PMID: 37402856 PMCID: PMC11041741 DOI: 10.1038/s41380-023-02161-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in a serious public health burden worldwide. In addition to respiratory, heart, and gastrointestinal symptoms, patients infected with SARS-CoV-2 experience a number of persistent neurological and psychiatric symptoms, known as long COVID or "brain fog". Studies of autopsy samples from patients who died from COVID-19 detected SARS-CoV-2 in the brain. Furthermore, increasing evidence shows that Epstein-Barr virus (EBV) reactivation after SARS-CoV-2 infection might play a role in long COVID symptoms. Moreover, alterations in the microbiome after SARS-CoV-2 infection might contribute to acute and long COVID symptoms. In this article, the author reviews the detrimental effects of COVID-19 on the brain, and the biological mechanisms (e.g., EBV reactivation, and changes in the gut, nasal, oral, or lung microbiomes) underlying long COVID. In addition, the author discusses potential therapeutic approaches based on the gut-brain axis, including plant-based diet, probiotics and prebiotics, fecal microbiota transplantation, and vagus nerve stimulation, and sigma-1 receptor agonist fluvoxamine.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
11
|
Vitiello A, Sabbatucci M, Silenzi A, Capuano A, Rossi F, Zovi A, Blasi F, Rezza G. The impact of SARS-CoV-2 infection in patients with cystic fibrosis undergoing CFTR channel modulators treatment: a literature review. Respir Res 2023; 24:278. [PMID: 37957647 PMCID: PMC10644493 DOI: 10.1186/s12931-023-02593-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Several risk factors for Coronavirus-2019 (COVID-19) disease have been highlighted in clinical evidence. Among the various risk factors are advanced age, metabolic illness such as diabetes, heart disease, and diseases of the respiratory system. Cystic Fibrosis (CF) is a rare disease with autosomal recessive transmission, characterised by a lack of synthesis of the CFTR channel protein, and multi-organ clinical symptoms mainly affecting the respiratory tract with recurrent pulmonary exacerbations. In view of the pathophysiological mechanisms, CF disease should be in theory considered a risk factor for SARS-CoV2 or severe COVID-19. However, recent clinical evidence seems to point in the opposite direction, suggesting that CF could be a protective factor against severe COVID-19. Possibly, the lack of presence or function of the CFTR channel protein could be linked to the expression of the membrane glycoprotein ACE-2, a key enzyme for the endocellular penetration of SARS-CoV-2 and related to the pathophysiology of COVID-19 disease. Furthermore, CFTR channel modulating agents could indirectly influence the expression of ACE-2, playing an important role in restoring the proper functioning of mucociliary clearance and the pulmonary microbiome in the host response to SARS-CoV-2 infection. In this review, the authors attempt to shed light on these important associations of issues that are not yet fully elucidated.
Collapse
Affiliation(s)
- Antonio Vitiello
- Directorate General for Health Prevention, Ministry of Health, Rome, Italy
| | - Michela Sabbatucci
- Directorate General for Health Prevention, Ministry of Health, Rome, Italy
- Department Infectious Diseases, National Institute of Health, Rome, Italy
| | - Andrea Silenzi
- Directorate General for Health Prevention, Ministry of Health, Rome, Italy
| | - Annalisa Capuano
- Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Rossi
- Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Zovi
- Directorate General for Hygiene, Food Safety and Nutrition, Ministry of Health, Rome, Italy.
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giovanni Rezza
- Directorate General for Health Prevention, Ministry of Health, Rome, Italy
| |
Collapse
|
12
|
Marino A, Battaglini M, Lefevre MC, Ceccarelli MC, Ziaja K, Ciofani G. Sensorization of microfluidic brain-on-a-chip devices: Towards a new generation of integrated drug screening systems. Trends Analyt Chem 2023; 168:117319. [PMID: 37915756 PMCID: PMC7615229 DOI: 10.1016/j.trac.2023.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Brain-on-a-chip (BoC) devices show typical characteristics of brain complexity, including the presence of different cell types, separation in different compartments, tissue-like three-dimensionality, and inclusion of the extracellular matrix components. Moreover, the incorporation of a vascular system mimicking the blood-brain barrier (BBB) makes BoC particularly attractive, since they can be exploited to test the brain delivery of different drugs and nanoformulations. In this review, we introduce the main innovations in BoC and BBB-on-a-chip models, especially focusing sensorization: electrical, electrochemical, and optical biosensors permit the real-time monitoring of different biological phenomena and markers, such as the release of growth factors, the expression of specific receptors/biomarkers, the activation of immune cells, cell viability, cell-cell interactions, and BBB crossing of drugs and nanoparticles. The recent improvements in signal amplification, miniaturization, and multiplication of the sensors are discussed in an effort to highlight their benefits versus limitations and delineate future challenges in this field.
Collapse
Affiliation(s)
- Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Marie Celine Lefevre
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Maria Cristina Ceccarelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
- Scuola Superiore Sant’Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Kamil Ziaja
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
- Scuola Superiore Sant’Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
- University of Aveiro, Department of Chemistry, CICECO-Aveiro Institute of Materials, Rua de Calouste Gulbenkian 1, 3810-074, Aveiro, Portugal
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| |
Collapse
|
13
|
Tripathi P. Medical viruses: diagnostic techniques. Virol J 2023; 20:143. [PMID: 37434239 DOI: 10.1186/s12985-023-02108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
The recent epidemics and pandemics caused by different viruses such as SARS-CoV-2, monkey pox, H1N1, ebola virus etc. have been a cause of mass destruction in the human race, the biggest decline slope in the global economy and mental trauma. A number of viruses have been discovered that may cause serious problems and to overcome this problem, early diagnosis of the viruses and understanding their infection pattern is a must. Early detection of viruses inside the host provides timely management in a strategic manner. Scientists have developed some effective and efficient methods to detect the viruses. In this review, we have explained a few types of diagnostic techniques: Biosensor based, immunological-based, and molecular-based diagnostic techniques that are prominent methodologies to identify and detect the course of infection related to the medical viruses. In biosensor-based diagnostic technique, an analytical device consisting of biological elements and physicochemical component gives a signal upon detection of viral antigen. In immunological-based diagnostic techniques, enzyme-linked antibodies are utilized to find the particular antiviral antibody or viral antigen in human specimens, and nucleic acid-based diagnostic techniques are based on the principle of amplification of the viral genome.
Collapse
Affiliation(s)
- Pratima Tripathi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
14
|
Sabbatucci M, Vitiello A, Clemente S, Zovi A, Boccellino M, Ferrara F, Cimmino C, Langella R, Ponzo A, Stefanelli P, Rezza G. Omicron variant evolution on vaccines and monoclonal antibodies. Inflammopharmacology 2023:10.1007/s10787-023-01253-6. [PMID: 37204696 DOI: 10.1007/s10787-023-01253-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV)-2 responsible for the global COVID-19 pandemic has caused almost 760 million confirmed cases and 7 million deaths worldwide, as of end-February 2023. Since the beginning of the first COVID-19 case, several virus variants have emerged: Alpha (B1.1.7), Beta (B135.1), Gamma (P.1), Delta (B.1.617.2) and then Omicron (B.1.1.529) and its sublineages. All variants have diversified in transmissibility, virulence, and pathogenicity. All the newly emerging SARS-CoV-2 variants appear to contain some similar mutations associated with greater "evasiveness" of the virus to immune defences. From early 2022 onward, several Omicron subvariants named BA.1, BA.2, BA.3, BA.4, and BA.5, with comparable mutation forms, have followed. After the wave of contagions caused by Omicron BA.5, a new Indian variant named Centaurus BA.2.75 and its new subvariant BA.2.75.2, a second-generation evolution of the Omicron variant BA.2, have recently been identified. From early evidence, it appears that this new variant has higher affinity for the cell entry receptor ACE-2, making it potentially able to spread very fast. According to the latest studies, the BA.2.75.2 variant may be able to evade more antibodies in the bloodstream generated by vaccination or previous infection, and it may be more resistant to antiviral and monoclonal antibody drug treatments. In this manuscript, the authors highlight and describe the latest evidences and critical issues have emerged on the new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Michela Sabbatucci
- Ministry of Health, Directorate-General for Health Prevention, Viale Giorgio Ribotta 5, 00144, Rome, Italy
- Department Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonio Vitiello
- Ministry of Health, Directorate-General for Health Prevention, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Salvatore Clemente
- Ministry of Health, Directorate-General for Health Prevention, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Andrea Zovi
- Ministry of Health, Directorate General of Hygiene, Food Safety and Nutrition, Viale Giorgio Ribotta 5, 00144, Rome, Italy.
| | | | - Francesco Ferrara
- Pharmaceutical Department, Local Health Unit Napoli 3 Sud, Dell'amicizia Street 22, 80035, Nola, Italy
| | - Carla Cimmino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Langella
- Department of Pharmaceutics, Agency for Health Protection of the Metropolitan Area of Milan, Milan, Italy
| | | | - Paola Stefanelli
- Department Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Giovanni Rezza
- Ministry of Health, Directorate-General for Health Prevention, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| |
Collapse
|
15
|
Iacono S, Schirò G, Davì C, Mastrilli S, Abbott M, Guajana F, Arnao V, Aridon P, Ragonese P, Gagliardo C, Colomba C, Scichilone N, D’Amelio M. COVID-19 and neurological disorders: what might connect Parkinson's disease to SARS-CoV-2 infection. Front Neurol 2023; 14:1172416. [PMID: 37273689 PMCID: PMC10232873 DOI: 10.3389/fneur.2023.1172416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
SARS-CoV-2 infection leading to Coronavirus disease 19 (COVID-19) rapidly became a worldwide health emergency due to its elevated infecting capacity, morbidity, and mortality. Parkinson’s disease (PD) is the second most common neurodegenerative disorder and, nowadays the relationship between SARS-CoV-2 outbreak and PD reached a great interest. Apparently independent one from the other, both diseases share some pathogenetic and clinical features. The relationship between SARS-CoV-2 infection and PD is complex and it depends on the direction of the association that is which of the two diseases comes first. Some evidence suggests that SARS-CoV-2 infection might be a possible risk factor for PD wherein the exposure to SARS-CoV-2 increase the risk for PD. This perspective comes out from the increasing cases of parkinsonism following COVID-19 and also from the anatomical structures affected in both COVID-19 and early PD such as olfactory bulb and gastrointestinal tract resulting in the same symptoms such as hyposmia and constipation. Furthermore, there are many reported cases of patients who developed hypokinetic extrapyramidal syndrome following SARS-CoV-2 infection although these would resemble a post-encephalitic conditions and there are to date relevant data to support the hypothesis that SARS-CoV-2 infection is a risk factor for the development of PD. Future large, longitudinal and population-based studies are needed to better assess whether the risk of developing PD after COVID-19 exists given the short time span from the starting of pandemic. Indeed, this brief time-window does not allow the precise estimation of the incidence and prevalence of PD after pandemic when compared with pre-pandemic era. If the association between SARS-CoV-2 infection and PD pathogenesis is actually putative, on the other hand, vulnerable PD patients may have a greater risk to develop COVID-19 being also more prone to develop a more aggressive disease course. Furthermore, PD patients with PD showed a worsening of motor and non-motor symptoms during COVID-19 outbreak due to both infection and social restriction. As well, the worries related to the risk of being infected should not be neglected. Here we summarize the current knowledge emerging about the epidemiological, pathogenetic and clinical relationship between SARS-CoV-2 infection and PD.
Collapse
Affiliation(s)
- Salvatore Iacono
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Chiara Davì
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Sergio Mastrilli
- Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone di Palermo, Palermo, Italy
| | - Michelle Abbott
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Fabrizio Guajana
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Valentina Arnao
- UO Neurologia e Stroke Unit, Azienda di Rilievo Nazionale ad Alta Specializzazione, Ospedali Civico Di Cristina Benfratelli, Palermo, Italy
| | - Paolo Aridon
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Paolo Ragonese
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Cesare Gagliardo
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Claudia Colomba
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Nicola Scichilone
- Division of Respiratory Diseases, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Marco D’Amelio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
16
|
Krekic S, Mero M, Kuhl M, Balasubramanian K, Dér A, Heiner Z. Photoactive Yellow Protein Adsorption at Hydrated Polyethyleneimine and Poly-l-Glutamic Acid Interfaces. Molecules 2023; 28:molecules28104077. [PMID: 37241818 DOI: 10.3390/molecules28104077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Chiral and achiral vibrational sum-frequency generation (VSFG) spectroscopy was performed in the 1400-1700 and 2800-3800 cm-1 range to study the interfacial structure of photoactive yellow protein (PYP) adsorbed on polyethyleneimine (PEI) and poly-l-glutamic acid (PGA) surfaces. Nanometer-thick polyelectrolyte layers served as the substrate for PYP adsorption, with 6.5-pair layers providing the most homogeneous surfaces. When the topmost material was PGA, it acquired a random coil structure with a small number of β2-fibrils. Upon adsorption on oppositely charged surfaces, PYP yielded similar achiral spectra. However, the VSFG signal intensity increased for PGA surfaces with a concomitant redshift of the chiral Cα-H and N-H stretching bands, suggesting increased adsorption for PGA compared to PEI. At low wavenumbers, both the backbone and the side chains of PYP induced drastic changes to all measured chiral and achiral VSFG spectra. Decreasing ambient humidity led to the loss of tertiary structure with a re-orientation of α-helixes, evidenced by a strongly blue-shifted chiral amide I band of the β-sheet structure with a shoulder at 1654 cm-1. Our observations indicate that chiral VSFG spectroscopy is not only capable of determining the main type of secondary structure of PYP, i.e., β-scaffold, but is also sensitive to tertiary protein structure.
Collapse
Affiliation(s)
- Szilvia Krekic
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, 6720 Szeged, Hungary
| | - Mark Mero
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Michel Kuhl
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Kannan Balasubramanian
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - András Dér
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary
| | - Zsuzsanna Heiner
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
17
|
Biosensor integrated brain-on-a-chip platforms: Progress and prospects in clinical translation. Biosens Bioelectron 2023; 225:115100. [PMID: 36709589 DOI: 10.1016/j.bios.2023.115100] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Because of the brain's complexity, developing effective treatments for neurological disorders is a formidable challenge. Research efforts to this end are advancing as in vitro systems have reached the point that they can imitate critical components of the brain's structure and function. Brain-on-a-chip (BoC) was first used for microfluidics-based systems with small synthetic tissues but has expanded recently to include in vitro simulation of the central nervous system (CNS). Defining the system's qualifying parameters may improve the BoC for the next generation of in vitro platforms. These parameters show how well a given platform solves the problems unique to in vitro CNS modeling (like recreating the brain's microenvironment and including essential parts like the blood-brain barrier (BBB)) and how much more value it offers than traditional cell culture systems. This review provides an overview of the practical concerns of creating and deploying BoC systems and elaborates on how these technologies might be used. Not only how advanced biosensing technologies could be integrated with BoC system but also how novel approaches will automate assays and improve point-of-care (PoC) diagnostics and accurate quantitative analyses are discussed. Key challenges providing opportunities for clinical translation of BoC in neurodegenerative disorders are also addressed.
Collapse
|
18
|
Hashimoto K. Overview of the potential use of fluvoxamine for COVID-19 and long COVID. DISCOVER MENTAL HEALTH 2023; 3:9. [PMID: 36968793 PMCID: PMC10029802 DOI: 10.1007/s44192-023-00036-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has presented a serious worldwide threat to public health since its emergence in late 2019. From a safety point of view, drug repurposing has received particular attention. Several clinical studies have demonstrated that the use of fluvoxamine, a selective serotonin reuptake inhibitor with potent sigma-1 receptor agonism, in the early-stage of infection might be associated with the prevention of clinical deterioration in individuals with SARS-CoV-2 infection, although several reports have shown that a low dose of fluvoxamine may be ineffective. There is increasing evidence that SARS-CoV-2 can cross the blood-brain barrier, resulting in a number of psychiatric and neurologic symptoms in COVID-19 survivors. Importantly, about half of COVID-19 survivors experience a variety of long-term sequelae, including psychiatric and neurologic symptoms, known as long COVID. In this priority review, the author presents an overview of the potential use of fluvoxamine in the treatment of COVID-19 and long COVID.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| |
Collapse
|
19
|
Kincses A, Vigh JP, Petrovszki D, Valkai S, Kocsis AE, Walter FR, Lin HY, Jan JS, Deli MA, Dér A. The Use of Sensors in Blood-Brain Barrier-on-a-Chip Devices: Current Practice and Future Directions. BIOSENSORS 2023; 13:bios13030357. [PMID: 36979569 PMCID: PMC10046513 DOI: 10.3390/bios13030357] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/01/2023]
Abstract
The application of lab-on-a-chip technologies in in vitro cell culturing swiftly resulted in improved models of human organs compared to static culture insert-based ones. These chip devices provide controlled cell culture environments to mimic physiological functions and properties. Models of the blood-brain barrier (BBB) especially profited from this advanced technological approach. The BBB represents the tightest endothelial barrier within the vasculature with high electric resistance and low passive permeability, providing a controlled interface between the circulation and the brain. The multi-cell type dynamic BBB-on-chip models are in demand in several fields as alternatives to expensive animal studies or static culture inserts methods. Their combination with integrated biosensors provides real-time and noninvasive monitoring of the integrity of the BBB and of the presence and concentration of agents contributing to the physiological and metabolic functions and pathologies. In this review, we describe built-in sensors to characterize BBB models via quasi-direct current and electrical impedance measurements, as well as the different types of biosensors for the detection of metabolites, drugs, or toxic agents. We also give an outlook on the future of the field, with potential combinations of existing methods and possible improvements of current techniques.
Collapse
Affiliation(s)
- András Kincses
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| | - Judit P. Vigh
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
- Doctoral School of Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Dániel Petrovszki
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, H-6720 Szeged, Hungary
| | - Sándor Valkai
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| | - Anna E. Kocsis
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| | - Fruzsina R. Walter
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan;
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| | - András Dér
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| |
Collapse
|
20
|
Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells 2023; 12:688. [PMID: 36899824 PMCID: PMC10001285 DOI: 10.3390/cells12050688] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). About 45% of COVID-19 patients experience several symptoms a few months after the initial infection and develop post-acute sequelae of SARS-CoV-2 (PASC), referred to as "Long-COVID," characterized by persistent physical and mental fatigue. However, the exact pathogenetic mechanisms affecting the brain are still not well-understood. There is increasing evidence of neurovascular inflammation in the brain. However, the precise role of the neuroinflammatory response that contributes to the disease severity of COVID-19 and long COVID pathogenesis is not clearly understood. Here, we review the reports that the SARS-CoV-2 spike protein can cause blood-brain barrier (BBB) dysfunction and damage neurons either directly, or via activation of brain mast cells and microglia and the release of various neuroinflammatory molecules. Moreover, we provide recent evidence that the novel flavanol eriodictyol is particularly suited for development as an effective treatment alone or together with oleuropein and sulforaphane (ViralProtek®), all of which have potent anti-viral and anti-inflammatory actions.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
21
|
Frasca L, Ocone G, Palazzo R. Safety of COVID-19 Vaccines in Patients with Autoimmune Diseases, in Patients with Cardiac Issues, and in the Healthy Population. Pathogens 2023; 12:pathogens12020233. [PMID: 36839505 PMCID: PMC9964607 DOI: 10.3390/pathogens12020233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) has been a challenge for the whole world since the beginning of 2020, and COVID-19 vaccines were considered crucial for disease eradication. Instead of producing classic vaccines, some companies pointed to develop products that mainly function by inducing, into the host, the production of the antigenic protein of SARS-CoV-2 called Spike, injecting an instruction based on RNA or a DNA sequence. Here, we aim to give an overview of the safety profile and the actual known adverse effects of these products in relationship with their mechanism of action. We discuss the use and safety of these products in at-risk people, especially those with autoimmune diseases or with previously reported myocarditis, but also in the general population. We debate the real necessity of administering these products with unclear long-term effects to at-risk people with autoimmune conditions, as well as to healthy people, at the time of omicron variants. This, considering the existence of therapeutic interventions, much more clearly assessed at present compared to the past, and the relatively lower aggressive nature of the new viral variants.
Collapse
|
22
|
Overduin M, Kervin TA, Tran A. Progressive membrane-binding mechanism of SARS-CoV-2 variant spike proteins. iScience 2022; 25:104722. [PMID: 35813872 PMCID: PMC9251956 DOI: 10.1016/j.isci.2022.104722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 12/09/2022] Open
Abstract
Membrane recognition by viral spike proteins is critical for infection. Here we show the host cell membrane-binding surfaces of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike variants Alpha, Beta, Gamma, Delta, Epsilon, Kappa, and Omicron as well as SARS-CoV-1 and pangolin and bat relatives. They show increases in membrane binding propensities over time, with all spike head mutations in variants, and particularly BA.1, impacting the protein's affinity to cell membranes. Comparison of hundreds of structures yields a progressive model of membrane docking in which spike protein trimers shift from initial perpendicular stances to increasingly tilted positions that draw viral particles alongside host cell membranes before optionally engaging angiotensin-converting enzyme 2 (ACE2) receptors. This culminates in the assembly of the symmetric fusion apparatus, with enhanced membrane interactions of variants explaining their unique cell fusion capacities and COVID-19 disease transmission rates.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
MicroRNAs as Potential Tools for Predicting Cancer Patients’ Susceptibility to SARS-CoV-2 Infection and Vaccination Response. Cells 2022; 11:cells11152279. [PMID: 35892576 PMCID: PMC9332853 DOI: 10.3390/cells11152279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease that is caused by a highly contagious and severe acute respiratory syndrome—coronavirus 2 (SARS-CoV-2). This infection started to spread across the world in 2019 and rapidly turned into a global pandemic, causing an urgent necessity for treatment strategies development. The mRNA vaccines against SARS-CoV-2 can trigger an immune response, providing genetic information that allows the production of spike glycoproteins. MiRNAs play a crucial role in diverse key cellular processes, including antiviral defense. Several miRNAs are described as key factors in SARS-CoV-2 human infection through the regulation of ACE2 levels and by the inhibition of SARS-CoV-2 replication and spike expression. Consequently, these molecules have been considered as highly promising biomarkers. In numerous human malignancies, it has been recognized that miRNAs expression is dysregulated. Since miRNAs can target SARS-CoV-2-associated mRNAs, in cancer patients, the deregulation of these molecules can impair the immune response to the vaccines. Therefore, in this review, we propose a miRNA profile of seven SARS-CoV-2-related miRNAs, namely miR-214, miR-98-5p, miR-7-5p, miR-24-3p, miR-145-5p, miR-223-3p and miR-15b-5p, that are deregulated in a high number of cancers and have the potential to be used as prognostic biomarkers to stratify cancer patients.
Collapse
|
24
|
Zhao Y, Lukiw WJ. SARS-CoV-2 Neuroinvasion, Inflammatory Neurodegeneration and Alzheimer's Disease. Front Cell Neurosci 2022; 16:937961. [PMID: 35783095 PMCID: PMC9247146 DOI: 10.3389/fncel.2022.937961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Cell Biology and Anatomy, LSU Health Science Center, New Orleans, LA, United States
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Ophthalmology, LSU Health Science Center, New Orleans, LA, United States
- Department of Neurology, Louisiana State University Health Science Center, New Orleans, LA, United States
| |
Collapse
|
25
|
Song Y, Zhang H, Zhu Y, Zhao X, Lei Y, Zhou W, Yu J, Dong X, Wang X, Du M, Yan H. Lysozyme Protects Against Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Inflammation in Human Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2022; 63:16. [PMID: 35713893 PMCID: PMC9206495 DOI: 10.1167/iovs.63.6.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose The purpose of this study was to investigate the effects of lysozyme, an antimicrobial enzyme found in tears that protects the eye against pathogens, on pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through corneal epithelial cells. Methods The expression of the angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease (TMPRSS2) in human corneal epithelial cells (HCECs) was measured by RT-PCR and Western blotting. The altered expression of the pro-inflammatory molecules induced by spike protein and lysozyme was analyzed by RT-PCR. Cell toxicity was tested by CCK8 assay. The cell entry of SAR-CoV-2 in HCECs and primary rabbit corneal epithelial cells (RbCECs) was detected by luciferase assay. Results ACE2 and TMPRSS2 were highly expressed in HCECs. The spike proteins of SARS-CoV-2 stimulated a robust inflammatory response in HCECs, characterized by increased secretion of pro-inflammatory molecules, including IL-6, TNF-α, iNOS, and MCP-1, and pretreatment with lysozyme in HCECs markedly decreased the production of proinflammatory molecules induced by spike proteins. In addition, the inflammatory cytokine TNF-α enhanced the entry of SARS-CoV-2 into HCECs, which can be mitigated by pretreatment with lysozyme. Conclusions In this study, we analyzed the susceptibility of human corneal epithelial cells to SARS-CoV-2 infection and suggested the protective effects of lysozyme on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yinting Song
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Haokun Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanfang Zhu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao Zhao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yi Lei
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Zhou
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinguo Yu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Dong
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mei Du
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
26
|
Löscher W, Howe CL. Molecular Mechanisms in the Genesis of Seizures and Epilepsy Associated With Viral Infection. Front Mol Neurosci 2022; 15:870868. [PMID: 35615063 PMCID: PMC9125338 DOI: 10.3389/fnmol.2022.870868] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
Seizures are a common presenting symptom during viral infections of the central nervous system (CNS) and can occur during the initial phase of infection ("early" or acute symptomatic seizures), after recovery ("late" or spontaneous seizures, indicating the development of acquired epilepsy), or both. The development of acute and delayed seizures may have shared as well as unique pathogenic mechanisms and prognostic implications. Based on an extensive review of the literature, we present an overview of viruses that are associated with early and late seizures in humans. We then describe potential pathophysiologic mechanisms underlying ictogenesis and epileptogenesis, including routes of neuroinvasion, viral control and clearance, systemic inflammation, alterations of the blood-brain barrier, neuroinflammation, and inflammation-induced molecular reorganization of synapses and neural circuits. We provide clinical and animal model findings to highlight commonalities and differences in these processes across various neurotropic or neuropathogenic viruses, including herpesviruses, SARS-CoV-2, flaviviruses, and picornaviruses. In addition, we extensively review the literature regarding Theiler's murine encephalomyelitis virus (TMEV). This picornavirus, although not pathogenic for humans, is possibly the best-characterized model for understanding the molecular mechanisms that drive seizures, epilepsy, and hippocampal damage during viral infection. An enhanced understanding of these mechanisms derived from the TMEV model may lead to novel therapeutic interventions that interfere with ictogenesis and epileptogenesis, even within non-infectious contexts.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Charles L. Howe
- Division of Experimental Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|