1
|
Zhang D, Li Z, Yang L, Ma H, Chen H, Zeng X. Architecturally designed sequential-release hydrogels. Biomaterials 2023; 303:122388. [PMID: 37980822 DOI: 10.1016/j.biomaterials.2023.122388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
Drug synergy has made significant strides in clinical applications in recent decades. However, achieving a platform that enables "single administration, multi-stage release" by emulating the natural physiological processes of the human body poses a formidable challenge in the field of molecular pharmaceutics. Hydrogels, as the novel generation of drug delivery systems, have gained widespread utilization in drug platforms owing to their exceptional biocompatibility and modifiability. Sequential drug delivery hydrogels (SDDHs), which amalgamate the advantages of hydrogel and sequential release platforms, offer a promising solution for effectively navigating the intricate human environment and accomplishing drug sequential release. Inspired by architectural design, this review establishes connections between three pivotal factors in SDDHs construction, namely mechanisms, carrier spatial structure, and stimuli-responsiveness, and three aspects of architectural design, specifically building materials, house structures, and intelligent interactive furniture, aiming at providing insights into recent developments in SDDHs. Furthermore, the dual-drug collocation and cutting-edge hydrogel preparation technologies as well as the prevailing challenges in the field were elucidated.
Collapse
Affiliation(s)
- Dan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hualin Ma
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Andalibi A, Veneziano R, Paige M, Buschmann M, Haymond A, Espina V, Luchini A, Liotta L, Bishop B, Van Hoek M. Drug discovery efforts at George Mason University. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:270-274. [PMID: 36921802 DOI: 10.1016/j.slasd.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/14/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
With over 39,000 students, and research expenditures in excess of $200 million, George Mason University (GMU) is the largest R1 (Carnegie Classification of very high research activity) university in Virginia. Mason scientists have been involved in the discovery and development of novel diagnostics and therapeutics in areas as diverse as infectious diseases and cancer. Below are highlights of the efforts being led by Mason researchers in the drug discovery arena. To enable targeted cellular delivery, and non-biomedical applications, Veneziano and colleagues have developed a synthesis strategy that enables the design of self-assembling DNA nanoparticles (DNA origami) with prescribed shape and size in the 10 to 100 nm range. The nanoparticles can be loaded with molecules of interest such as drugs, proteins and peptides, and are a promising new addition to the drug delivery platforms currently in use. The investigators also recently used the DNA origami nanoparticles to fine tune the spatial presentation of immunogens to study the impact on B cell activation. These studies are an important step towards the rational design of vaccines for a variety of infectious agents. To elucidate the parameters for optimizing the delivery efficiency of lipid nanoparticles (LNPs), Buschmann, Paige and colleagues have devised methods for predicting and experimentally validating the pKa of LNPs based on the structure of the ionizable lipids used to formulate the LNPs. These studies may pave the way for the development of new LNP delivery vehicles that have reduced systemic distribution and improved endosomal release of their cargo post administration. To better understand protein-protein interactions and identify potential drug targets that disrupt such interactions, Luchini and colleagues have developed a methodology that identifies contact points between proteins using small molecule dyes. The dye molecules noncovalently bind to the accessible surfaces of a protein complex with very high affinity, but are excluded from contact regions. When the complex is denatured and digested with trypsin, the exposed regions covered by the dye do not get cleaved by the enzyme, whereas the contact points are digested. The resulting fragments can then be identified using mass spectrometry. The data generated can serve as the basis for designing small molecules and peptides that can disrupt the formation of protein complexes involved in disease processes. For example, using peptides based on the interleukin 1 receptor accessory protein (IL-1RAcP), Luchini, Liotta, Paige and colleagues disrupted the formation of IL-1/IL-R/IL-1RAcP complex and demonstrated that the inhibition of complex formation reduced the inflammatory response to IL-1B. Working on the discovery of novel antimicrobial agents, Bishop, van Hoek and colleagues have discovered a number of antimicrobial peptides from reptiles and other species. DRGN-1, is a synthetic peptide based on a histone H1-derived peptide that they had identified from Komodo Dragon plasma. DRGN-1 was shown to disrupt bacterial biofilms and promote wound healing in an animal model. The peptide, along with others, is being developed and tested in preclinical studies. Other research by van Hoek and colleagues focuses on in silico antimicrobial peptide discovery, screening of small molecules for antibacterial properties, as well as assessment of diffusible signal factors (DFS) as future therapeutics. The above examples provide insight into the cutting-edge studies undertaken by GMU scientists to develop novel methodologies and platform technologies important to drug discovery.
Collapse
Affiliation(s)
- Ali Andalibi
- School for Systems Biology, George Mason University, Manassas, VA, USA
| | - Remi Veneziano
- Department of Biomedical Engineering, College of Engineering and Computing, George Mason University, Manassas, VA, USA
| | - Mikell Paige
- Department of Chemistry, College of Science, George Mason University, Fairfax, VA, USA
| | - Michael Buschmann
- Department of Biomedical Engineering, College of Engineering and Computing, George Mason University, Manassas, VA, USA
| | - Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA; School for Systems Biology, George Mason University, Manassas, VA, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA; School for Systems Biology, George Mason University, Manassas, VA, USA
| | - Barney Bishop
- Department of Chemistry, College of Science, George Mason University, Fairfax, VA, USA
| | - Monique Van Hoek
- School for Systems Biology, George Mason University, Manassas, VA, USA
| |
Collapse
|
3
|
Lu B, Vecchioni S, Ohayon YP, Canary JW, Sha R. The wending rhombus: Self-assembling 3D DNA crystals. Biophys J 2022; 121:4759-4765. [PMID: 36004779 PMCID: PMC9808540 DOI: 10.1016/j.bpj.2022.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/11/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023] Open
Abstract
In this perspective, we provide a summary of recent developments in self-assembling three-dimensional (3D) DNA crystals. Starting from the inception of this subfield, we describe the various advancements in structure that have led to an increase in the diversity of macromolecular crystal motifs formed through self-assembly, and we further comment on the future directions of the field, which exploit noncanonical base pairing interactions beyond Watson-Crick. We then survey the current applications of self-assembling 3D DNA crystals in reversibly active nanodevices and materials engineering and provide an outlook on the direction researchers are taking these structures. Finally, we compare 3D DNA crystals with DNA origami and suggest how these distinct subfields might work together to enhance biomolecule structure solution, nanotechnological motifs, and their applications.
Collapse
Affiliation(s)
- Brandon Lu
- Department of Chemistry, New York University, New York, New York
| | - Simon Vecchioni
- Department of Chemistry, New York University, New York, New York
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, New York
| | - James W Canary
- Department of Chemistry, New York University, New York, New York.
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, New York.
| |
Collapse
|