1
|
Quintavalle C, Ingenito F, Roscigno G, Pattanayak B, Esposito CL, Affinito A, Fiore D, Petrillo G, Nuzzo S, Della Ventura B, D'Aria F, Giancola C, Mitola S, Grillo E, Pirozzi M, Donati G, Di Leva FS, Marinelli L, Minic Z, De Micco F, Thomas G, Berezovski MV, Condorelli G. Ex.50.T aptamer impairs tumor-stroma cross-talk in breast cancer by targeting gremlin-1. Cell Death Discov 2025; 11:94. [PMID: 40069570 PMCID: PMC11897156 DOI: 10.1038/s41420-025-02363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/19/2024] [Accepted: 02/14/2025] [Indexed: 03/15/2025] Open
Abstract
The tumor microenvironment profoundly influences tumor complexity, particularly in breast cancer, where cancer-associated fibroblasts play pivotal roles in tumor progression and therapy resistance. Extracellular vesicles are involved in mediating communication within the TME, specifically highlighting their role in promoting the transformation of normal fibroblasts into cancer-associated fibroblasts. Recently, we identified an RNA aptamer, namely ex.50.T, that binds with remarkable affinity to extracellular vesicles shed from triple-negative breast cancer cells. Here, through in vitro assays and computational analyses, we demonstrate that the binding of ex.50.T to extracellular vesicles and parental breast cancer cells is mediated by recognition of gremlin-1 (GREM1), a bone morphogenic protein antagonist implicated in breast cancer aggressiveness and metastasis. Functionally, we uncover the role of ex.50.T as an innovative therapeutic agent in the process of tumor microenvironment re-modeling, impeding GREM1 signaling, blocking triple-negative breast cancer extracellular vesicles internalization in recipient cells, and counteracting the transformation of normal fibroblasts into cancer-associated fibroblasts. Altogether, our findings highlight ex.50.T as a novel therapeutical avenue for breast cancer and potentially other GREM1-dependent malignancies, offering insights into disrupting TME dynamics and enhancing cancer treatment strategies.
Collapse
Affiliation(s)
- Cristina Quintavalle
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| | - Francesco Ingenito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Birlipta Pattanayak
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carla Lucia Esposito
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- AKA Biotech S.r.l, Naples, Italy
| | - Danilo Fiore
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | | | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marinella Pirozzi
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Greta Donati
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Zoran Minic
- Department of Chemistry and Biomolecular Sciences and John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences and John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON, Canada
| | - Gerolama Condorelli
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
2
|
Li H, Zhou Y, Xiao J, Liu F. A comprehensive prognostic and immunological implications of Gremlin 1 in lung adenocarcinoma. Front Immunol 2025; 16:1529195. [PMID: 40066442 PMCID: PMC11891240 DOI: 10.3389/fimmu.2025.1529195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/04/2025] [Indexed: 03/15/2025] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a prevalent form of lung cancer globally, known for its high invasiveness, metastatic potential, and notable heterogeneity, particularly in its response to immunotherapy. Gremlin 1 (GREM1) is implicated in tumor progression and poor prognosis in multiple cancers. However, GREM1's specific role in LUAD remains unclear. This study systematically examines GREM1 expression in LUAD and its association with tumor progression, immune microenvironment, and prognosis. Methods Gene expression data from the TCGA and GSE31210 databases were analyzed using Weighted Gene Co-expression Network Analysis (WGCNA), GO and KEGG enrichment analyses. The prognostic value of GREM1 was evaluated through survival analysis, Cox regression, and Kaplan-Meier curves. Additionally, immune microenvironment analysis was conducted to explore the relationship between GREM1 and immune cell infiltration. In vitro experiments, including Western blot and assays for cell proliferation, migration, and invasion, were performed to confirm the specific role of GREM1 in LUAD cells. Results GREM1 was significantly upregulated in tumor tissues and correlated with poor prognosis. Moreover, GREM1 was significantly associated with immune cell infiltration and immunotherapy response within the immune microenvironment. In vitro experiments confirmed that GREM1 overexpression significantly promoted LUAD cell proliferation, migration, and epithelial-mesenchymal transition (EMT), whereas GREM1 knockdown suppressed these functions. Conclusions A comprehensive analysis indicates that GREM1 is crucial in LUAD progression, with its overexpression predicting poor prognosis. GREM1 could be a potential therapeutic target for LUAD, providing insights for personalized therapy optimization.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiaqing Xiao
- Institute of Disinfection and Infection Control, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin, China
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
3
|
Kitaoka T, Harada K, Sakashita S, Kojima M, Taki T, Kuwata T, Kinoshita T, Futakuchi M, Ishii G, Sakamoto N. Quantification of Gremlin 1 throughout the tumor stroma using whole slide imaging and its clinicopathological significance in gastric cancer. Virchows Arch 2024; 485:1107-1116. [PMID: 39225725 DOI: 10.1007/s00428-024-03903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Gremlin 1 (GREM1) is an antagonist of bone morphogenetic protein (BMP). GREM1 is expressed in the stromal cells of various carcinomas and promotes tumor progression by suppressing BMP signaling. We designed this study to establish an evaluation strategy for GREM1 expression, focusing on the tumor stroma, and to examine its clinicopathological significance in gastric cancer (GC) progression. We employed RNA in situ hybridization (ISH) to evaluate the prognostic value of GREM1 expression in a cohort of 104 surgically resected GC cases and assessed ISH scores according to previous reports. GREM1 expression was observed in tumor stromal cells, including fibroblasts. We defined GREM1-positive cells as those expressing ISH score ≥ 3 and quantified the number of GREM1-positive cells using image analysis software. We examined the relationship between the number of GREM1-positive cells in the tumor stroma and clinicopathological features. The number of GREM1-positive cells per tumor stroma ranged from 0 to 714.7 cells/mm2 (median, 1.65 cells/mm2). We divided the 104 GC cases into GREM1-High and GREM1-Low expression groups based on the abovementioned median value. GREM1-High expression group was significantly associated with a more advanced pT grade, pN grade, lymphatic invasion, and venous invasion. Kaplan-Meier analysis showed significantly poorer survival in the GREM1-High expression group than in the GREM1-Low expression group. These results indicated that GREM1 expression in GC is localized in tumor stromal cells, and that high GREM1 expression in the tumor stroma could be a poor prognostic factor.
Collapse
Affiliation(s)
- Takumi Kitaoka
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Kenji Harada
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shingo Sakashita
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Motohiro Kojima
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tetsuro Taki
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takeshi Kuwata
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takahiro Kinoshita
- Department of Gastric Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Mitsuru Futakuchi
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
- Division of Innovative Pathology and Laboratory Medicine, National Cancer Center, Kashiwa, Japan
| | - Naoya Sakamoto
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan.
| |
Collapse
|
4
|
Ma H, Gao G, Palti Y, Tripathi V, Birkett JE, Weber GM. Transcriptomic Response of the Ovarian Follicle Complex in Post-Vitellogenic Rainbow Trout to 17α,20β-Dihdroxy-4-pregnen-3-one In Vitro. Int J Mol Sci 2024; 25:12683. [PMID: 39684392 DOI: 10.3390/ijms252312683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Gonadotropins and progestins are the primary regulators of follicle maturation and ovulation in fish, and they require complex communication among the oocyte and somatic cells of the follicle. The major progestin and the maturation-inducing hormone in salmonids is 17α,20β-dihdroxy-4-pregnen-3-one (17,20βP), and traditional nuclear receptors and membrane steroid receptors for the progestin have been identified within the follicle. Herein, RNA-seq was used to conduct a comprehensive survey of changes in gene expression throughout the intact follicle in response to in vitro treatment with these hormones to provide a foundation for understanding the coordination of their actions in regulating follicle maturation and preparation for ovulation. A total of 5292 differentially expressed genes were identified from our transcriptome sequencing datasets comparing four treatments: fresh tissue; untreated control; 17,20βP-treated; and salmon pituitary homogenate-treated follicles. Extensive overlap in affected genes suggests many gonadotropin actions leading to the acquisition of maturational and ovulatory competence are mediated in part by gonadotropin induction of 17,20βP synthesis. KEGG analysis identified signaling pathways, including MAPK, TGFβ, FoxO, and Wnt signaling pathways, among the most significantly enriched pathways altered by 17,20βP treatment, suggesting pervasive influences of 17,20βP on actions of other endocrine and paracrine factors in the follicle complex.
Collapse
Affiliation(s)
- Hao Ma
- US Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ruminant Disease and Immunology Research Unit, Ames, IA 50010, USA
| | - Guangtu Gao
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Yniv Palti
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Vibha Tripathi
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Jill E Birkett
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Gregory M Weber
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| |
Collapse
|
5
|
Deischinger C, Bastian M, Leitner K, Bancher-Todesca D, Kiss H, Baumgartner-Parzer S, Kautzky-Willer A, Harreiter J. Gremlin-1 in pregnancy and postpartum: relation to the fatty liver index, markers of bone health, glucose metabolism and gestational diabetes mellitus status. Acta Diabetol 2023; 60:1699-1707. [PMID: 37518503 PMCID: PMC10587257 DOI: 10.1007/s00592-023-02151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
INTRODUCTION Gremlin-1 is a peptide that functions as an antagonist to bone morphogenic proteins and is overexpressed in obesity and type 2 diabetes mellitus. Gremlin-1 has not yet been investigated in pregnancy, pregnancy-related insulin resistance or gestational diabetes mellitus (GDM). PATIENTS AND METHODS Gremlin-1 levels were measured throughout the pregnancy of 58 women at high risk for GDM at the Medical University of Vienna. Furthermore, an oral glucose tolerance test, fasting insulin, fasting glucose, sex hormones, blood lipids, liver and renal parameters, and markers of bone development were evaluated at two points during pregnancy (< 20 weeks of gestation (GW), GW 24-28) and 12-14 weeks postpartum. RESULTS Gremlin-1 levels decreased from < 20 GW (mean = 9.2 pg/ml, SD = 8.4 pg/ml) to GW 24-28 (mean = 6.7 pg/ml, SD = 5.7 pg/ml, p = 0.033) and increased again postpartum, albeit not significantly (mean = 10.7 pg/ml, SD = 13.1 pg/ml, p = 0.339). During pregnancy, Gremlin-1 levels correlated negatively with osteocalcin and procollagen type I aminoterminal propeptide (P1NP), markers of bone health. Concerning glucose metabolism, Gremlin-1 levels were inversely related to the Insulinogenic Index at GW < 20. However, Gremlin-1 levels were not significantly different between women with normal glucose tolerance and GDM during pregnancy. Postpartum, Gremlin-1 was associated with the fatty liver index, osteocalcin levels, diastolic blood pressure and weight. CONCLUSION Gremlin-1 levels decreased significantly during pregnancy. The biomarker is not related to GDM status, but correlates negatively with the Insulinogenic Index, an index related to beta cell function. Trial Registry Number ACTRN12616000924459.
Collapse
Affiliation(s)
- Carola Deischinger
- Gender Medicine Unit, Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Magdalena Bastian
- Gender Medicine Unit, Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Karoline Leitner
- Gender Medicine Unit, Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Dagmar Bancher-Todesca
- Division of Fetomaternal Medicine, Department of Obstetrics and Gynaecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Herbert Kiss
- Division of Fetomaternal Medicine, Department of Obstetrics and Gynaecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Gender Medicine Unit, Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Gender Medicine Unit, Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Jürgen Harreiter
- Gender Medicine Unit, Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Grillo E, Ravelli C, Colleluori G, D'Agostino F, Domenichini M, Giordano A, Mitola S. Role of gremlin-1 in the pathophysiology of the adipose tissues. Cytokine Growth Factor Rev 2023; 69:51-60. [PMID: 36155165 DOI: 10.1016/j.cytogfr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023]
Abstract
Gremlin-1 is a secreted bone morphogenetic protein (BMP) antagonist playing a pivotal role in the regulation of tissue formation and embryonic development. Since its first identification in 1997, gremlin-1 has been shown to be a multifunctional factor involved in wound healing, inflammation, cancer and tissue fibrosis. Among others, the activity of gremlin-1 is mediated by its interaction with BMPs or with membrane receptors such as the vascular endothelial growth factor receptor 2 (VEGFR2) or heparan sulfate proteoglycans (HSPGs). Growing evidence has highlighted a central role of gremlin-1 in the homeostasis of the adipose tissue (AT). Of note, gremlin-1 is involved in AT dysfunction during type 2 diabetes, obesity and non-alcoholic fatty liver disease (NAFLD) metabolic disorders. In this review we discuss recent findings on gremlin-1 involvement in AT biology, with particular attention to its role in metabolic diseases, to highlight its potential as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy
| | - Francesco D'Agostino
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Domenichini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
7
|
Wang D, Jiang H. Long noncoding RNA long intergenic non-protein-coding RNA 173 contributes to nasopharyngeal carcinoma progression by regulating microRNA-765/Gremlin 1 pathway. Hum Exp Toxicol 2023; 42:9603271231172921. [PMID: 37365917 DOI: 10.1177/09603271231172921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
BACKGROUND Long intergenic non-protein-coding RNA 173 (LINC00173) executes vital functions in various cancers. Nevertheless, its role and expression in nasopharyngeal carcinoma (NPC) have yet to be investigated. Here, we investigated its effects on the malignancy characteristics of NPC and elucidated the potential molecular mechanism of LINC00173 in NPC progression. METHODS Quantitative real-time reverse transcription-PCR (qRT-PCR) and immunoblotting were conducted to estimate the LINC00173, microRNA-765 (miR-765), and Gremlin 1 (GREM1) expressions in NPC cells and tissues. Cell counting kit-8 (CCK8), colony formation, and wound healing experiments were done to evaluate the proliferation, growth, and migration of NPC cells, respectively. The tumorous growth of NPC cells in vivo was assessed through the xenograft tumor experiment. Furthermore, the interactions among miR-765, LINC00173, and GREM1 were investigated through bioinformatics analyses, luciferase reporter and RNA immunoprecipitation chip assays. RESULTS An upregulated LINC00173 expression was found in NPC cell lines and tissues. The functional experiments uncovered that its downregulation repressed NPC cell proliferation, growth, and migration. In addition, LINC00173 knockdown hampered the NPC cells' tumorous growth in vivo. These effects could partially be reversed by downregulating miR-765. GREM1 is a downstream target of miR-765. GREM1 knockdown could repress the proliferation, growth, and migration of NPC cells. Nonetheless, these anti-tumor effects could be abolished by miR-765 downregulation. Mechanistically, LINC00173 increased the expression of GREM1 by binding with miR-765. CONCLUSIONS LINC00173 functions as an oncogenic factor by binding with miR-765 to promote the progression of NPC via GREM1 upregulation. This study provides a novel insight into the molecular mechanisms involved in NPC progression.
Collapse
Affiliation(s)
- Dan Wang
- Otorhinolaryngologic Department, The Fifth Hospital of Wuhan, Wuhan, China
| | - Heng Jiang
- Otorhinolaryngologic Department, The Fifth Hospital of Wuhan, Wuhan, China
| |
Collapse
|
8
|
Davies GCG, Dedi N, Jones PS, Kevorkian L, McMillan D, Ottone C, Schulze MSED, Scott-Tucker A, Tewari R, West S, Wright M, Rowley TF. Discovery of ginisortamab, a potent and novel anti-gremlin-1 antibody in clinical development for the treatment of cancer. MAbs 2023; 15:2289681. [PMID: 38084840 DOI: 10.1080/19420862.2023.2289681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Gremlin-1, a high-affinity antagonist of bone morphogenetic proteins (BMP)-2, -4, and -7, is implicated in tumor initiation and progression. Increased gremlin-1 expression, and therefore suppressed BMP signaling, correlates with poor prognosis in a range of cancer types. A lack of published work using therapeutic modalities has precluded the testing of the hypothesis that blocking the gremlin-1/BMP interaction will provide benefits to patients. To address this shortfall, we developed ginisortamab (UCB6114), a first-in-class clinical anti-human gremlin-1 antibody, currently in clinical development for the treatment of cancer, along with its murine analog antibody Ab7326 mouse immunoglobulin G1 (mIgG1). Surface plasmon resonance assays revealed that ginisortamab and Ab7326 mIgG1 had similar affinities for human and mouse gremlin-1, with mean equilibrium dissociation constants of 87 pM and 61 pM, respectively. The gremlin-1/Ab7326 antigen-binding fragment (Fab) crystal structure revealed a gremlin-1 dimer with a Fab molecule bound to each monomer that blocked BMP binding. In cell culture experiments, ginisortamab fully blocked the activity of recombinant human gremlin-1, and restored BMP signaling pathways in human colorectal cancer (CRC) cell lines. Furthermore, in a human CRC - fibroblast co-culture system where gremlin-1 is produced by the fibroblasts, ginisortamab restored BMP signaling in both the CRC cells and fibroblasts, demonstrating its activity in a relevant human tumor microenvironment model. The safety and efficacy of ginisortamab are currently being evaluated in a Phase 1/2 clinical trial in patients with advanced solid tumors (NCT04393298).
Collapse
|