1
|
Ott FW, Sichler ME, Bouter C, Enayati M, Wiltfang J, Bayer TA, Beindorff N, Löw MJ, Bouter Y. Chronic exposure to a synthetic cannabinoid improves cognition and increases locomotor activity in Tg4-42 Alzheimer's disease mice. J Alzheimers Dis Rep 2025; 9:25424823241306770. [PMID: 40034517 PMCID: PMC11869267 DOI: 10.1177/25424823241306770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/17/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and behavior impairments. Despite recent approvals of anti-amyloid antibodies, there remains a need for disease modifying and easily accessible therapies. Emerging evidence suggests that targeting the endocannabinoid system may hold promise for AD therapy as it plays a crucial role in different physiological processes, including learning, memory and anxiety, as well as inflammatory and immune responses. Objective In this study, we investigated the therapeutic potential of the synthetic cannabinoid WIN 55,212-2 on memory deficits in Tg4-42 transgenic mice. Methods Tg4-42 mice were assigned to two treatment groups to investigate the preventive effects of WIN 55,212-2 after a prolonged washout period, as well as the therapeutic effects of WIN 55,212-2 on behavior. Furthermore, the effects of WIN 55,212-2 treatment on AD pathology, including inflammation, amyloid-β load, neurogenesis, and brain glucose metabolism, were evaluated. Results Therapeutic WIN 55,212-2 treatment rescued recognition memory and spatial reference deficits in Tg4-42 mice. Furthermore, therapeutic WIN 55,212-2 administration improved motor performance. In addition, preventative WIN 55,212-2 treatment rescued spatial learning and reference memory deficits. Importantly, WIN 55,212-2 treatment did not affect anxiety-like behavior. However, therapeutic and preventative WIN 55,212-2 treatment resulted in an increase locomotor activity and swimming speed in Tg4-42 mice. WIN-treatment reduced microgliosis in the hippocampus of preventively treated mice and rescued brain glucose metabolism in therapeutically treated Tg4-42 mice. Conclusions Our findings emphasize the therapeutic promise of the synthetic cannabinoid WIN 55,212-2 in alleviating behavioral and cognitive deficits linked to AD.
Collapse
Affiliation(s)
- Frederik W Ott
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Marius E Sichler
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen, Goettingen, Germany
| | - Marzieh Enayati
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
- Clincal Science Group, German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Thomas A Bayer
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian J Löw
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
- Department of Nuclear Medicine, University Medical Center Göttingen, Goettingen, Germany
| |
Collapse
|
2
|
Sheppard PAS, Oomen CA, Bussey TJ, Saksida LM. The Granular Retrosplenial Cortex Is Necessary in Male Rats for Object-Location Associative Learning and Memory, But Not Spatial Working Memory or Visual Discrimination and Reversal, in the Touchscreen Operant Chamber. eNeuro 2024; 11:ENEURO.0120-24.2024. [PMID: 38844347 PMCID: PMC11208985 DOI: 10.1523/eneuro.0120-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
The retrosplenial cortex (RSC) is a hub of diverse afferent and efferent projections thought to be involved in associative learning. RSC shows early pathology in mild cognitive impairment and Alzheimer's disease (AD), which impairs associative learning. To understand and develop therapies for diseases such as AD, animal models are essential. Given the importance of human RSC in object-location associative learning and the success of object-location associative paradigms in human studies and in the clinic, it would be of considerable value to establish a translational model of object-location learning for the rodent. For this reason, we sought to test the role of RSC in object-location learning in male rats using the object-location paired-associates learning (PAL) touchscreen task. First, increased cFos immunoreactivity was observed in granular RSC following PAL training when compared with extended pretraining controls. Following this, RSC lesions following PAL acquisition were used to explore the necessity of the RSC in object-location associative learning and memory and two tasks involving only one modality: trial-unique nonmatching-to-location for spatial working memory and pairwise visual discrimination/reversal. RSC lesions impaired both memory for learned paired-associates and learning of new object-location associations but did not affect performance in either the spatial or visual single-modality tasks. These findings provide evidence that RSC is necessary for object-location learning and less so for learning and memory involving the individual modalities therein.
Collapse
Affiliation(s)
- Paul A S Sheppard
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Charlotte A Oomen
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- MRC and Wellcome Trust Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Timothy J Bussey
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- MRC and Wellcome Trust Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Lisa M Saksida
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- MRC and Wellcome Trust Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
3
|
Zahr NM. Alcohol Use Disorder and Dementia: A Review. Alcohol Res 2024; 44:03. [PMID: 38812709 PMCID: PMC11135165 DOI: 10.35946/arcr.v44.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
PURPOSE By 2040, 21.6% of Americans will be over age 65, and the population of those older than age 85 is estimated to reach 14.4 million. Although not causative, older age is a risk factor for dementia: every 5 years beyond age 65, the risk doubles; approximately one-third of those older than age 85 are diagnosed with dementia. As current alcohol consumption among older adults is significantly higher compared to previous generations, a pressing question is whether drinking alcohol increases the risk for Alzheimer's disease or other forms of dementia. SEARCH METHODS Databases explored included PubMed, Web of Science, and ScienceDirect. To accomplish this narrative review on the effects of alcohol consumption on dementia risk, the literature covered included clinical diagnoses, epidemiology, neuropsychology, postmortem pathology, neuroimaging and other biomarkers, and translational studies. Searches conducted between January 12 and August 1, 2023, included the following terms and combinations: "aging," "alcoholism," "alcohol use disorder (AUD)," "brain," "CNS," "dementia," "Wernicke," "Korsakoff," "Alzheimer," "vascular," "frontotemporal," "Lewy body," "clinical," "diagnosis," "epidemiology," "pathology," "autopsy," "postmortem," "histology," "cognitive," "motor," "neuropsychological," "magnetic resonance," "imaging," "PET," "ligand," "degeneration," "atrophy," "translational," "rodent," "rat," "mouse," "model," "amyloid," "neurofibrillary tangles," "α-synuclein," or "presenilin." When relevant, "species" (i.e., "humans" or "other animals") was selected as an additional filter. Review articles were avoided when possible. SEARCH RESULTS The two terms "alcoholism" and "aging" retrieved about 1,350 papers; adding phrases-for example, "postmortem" or "magnetic resonance"-limited the number to fewer than 100 papers. Using the traditional term, "alcoholism" with "dementia" resulted in 876 citations, but using the currently accepted term "alcohol use disorder (AUD)" with "dementia" produced only 87 papers. Similarly, whereas the terms "Alzheimer's" and "alcoholism" yielded 318 results, "Alzheimer's" and "alcohol use disorder (AUD)" returned only 40 citations. As pertinent postmortem pathology papers were published in the 1950s and recent animal models of Alzheimer's disease were created in the early 2000s, articles referenced span the years 1957 to 2024. In total, more than 5,000 articles were considered; about 400 are herein referenced. DISCUSSION AND CONCLUSIONS Chronic alcohol misuse accelerates brain aging and contributes to cognitive impairments, including those in the mnemonic domain. The consensus among studies from multiple disciplines, however, is that alcohol misuse can increase the risk for dementia, but not necessarily Alzheimer's disease. Key issues to consider include the reversibility of brain damage following abstinence from chronic alcohol misuse compared to the degenerative and progressive course of Alzheimer's disease, and the characteristic presence of protein inclusions in the brains of people with Alzheimer's disease, which are absent in the brains of those with AUD.
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California. Center for Health Sciences, SRI International, Menlo Park, California
| |
Collapse
|
4
|
Grandjean J, Lake EMR, Pagani M, Mandino F. What N Is N-ough for MRI-Based Animal Neuroimaging? eNeuro 2024; 11:ENEURO.0531-23.2024. [PMID: 38499355 PMCID: PMC10950324 DOI: 10.1523/eneuro.0531-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Fueled by the recent and controversial brain-wide association studies in humans, the animal neuroimaging community has also begun questioning whether using larger sample sizes is necessary for ethical and effective scientific progress. In this opinion piece, we illustrate two opposing views on sample size extremes in MRI-based animal neuroimaging.
Collapse
Affiliation(s)
- Joanes Grandjean
- Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500HB, The Netherlands
- Department for Medical Imaging, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Evelyn M R Lake
- Departments of Radiology and Biomedical Imaging, New Haven, Connecticut 06519
- Biomedical Engineering, Yale School of Medicine, New Haven, Connecticut 06519
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
- IMT School for Advanced Studies, Lucca 55100, Italy
| | - Francesca Mandino
- Departments of Radiology and Biomedical Imaging, New Haven, Connecticut 06519
| |
Collapse
|
5
|
Zeng X, Cheung SKK, Shi M, Or PMY, Li Z, Liu JYH, Ho WLH, Liu T, Lu K, Rudd JA, Wang Y, Chan AM. Astrocyte-specific knockout of YKL-40/Chi3l1 reduces Aβ burden and restores memory functions in 5xFAD mice. J Neuroinflammation 2023; 20:290. [PMID: 38042775 PMCID: PMC10693711 DOI: 10.1186/s12974-023-02970-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023] Open
Abstract
Glial cell-mediated neuroinflammation and neuronal attrition are highly correlated with cognitive impairment in Alzheimer's disease. YKL-40 is a secreted astrocytic glycoprotein that serves as a diagnostic biomarker of Alzheimer's disease. High levels of YKL-40 are associated with either advanced Alzheimer's disease or the normal aging process. However, the functional role of YKL-40 in Alzheimer's disease development has not been firmly established. In a 5xFAD mouse model of Alzheimer's disease, we observed increased YKL-40 expression in the cerebrospinal fluid of 7-month-old mice and was correlated with activated astrocytes. In primary astrocytes, Aβ1-42 upregulated YKL-40 in a dose-dependent manner and was correlated with PI3-K signaling pathway activation. Furthermore, primary neurons treated with YKL-40 and/or Aβ1-42 resulted in significant synaptic degeneration, reduced dendritic complexity, and impaired electrical parameters. More importantly, astrocyte-specific knockout of YKL-40 over a period of 7 days in symptomatic 5xFAD mice could effectively reduce amyloid plaque deposition in multiple brain regions. This was also associated with attenuated glial activation, reduced neuronal attrition, and restored memory function. These biological phenotypes could be explained by enhanced uptake of Aβ1-42 peptides, increased rate of Aβ1-42 degradation and acidification of lysosomal compartment in YKL-40 knockout astrocytes. Our results provide new insights into the role of YKL-40 in Alzheimer's disease pathogenesis and demonstrate the potential of targeting this soluble biomarker to alleviate cognitive defects in symptomatic Alzheimer's disease patients.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Stanley K K Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Mengqi Shi
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Penelope M Y Or
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Zhining Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Wayne L H Ho
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Tian Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Kun Lu
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Yubing Wang
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| | - Andrew M Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China.
| |
Collapse
|
6
|
Stapleton MC, Koch SP, Cortes DRE, Wyman S, Schwab KE, Mueller S, McKennan CG, Boehm-Sturm P, Wu YL. Apolipoprotein-E deficiency leads to brain network alteration characterized by diffusion MRI and graph theory. Front Neurosci 2023; 17:1183312. [PMID: 38075287 PMCID: PMC10702609 DOI: 10.3389/fnins.2023.1183312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/18/2023] [Indexed: 02/12/2024] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is a major health concern for senior citizens, characterized by memory loss, confusion, and impaired cognitive abilities. Apolipoprotein-E (ApoE) is a well-known risk factor for LOAD, though exactly how ApoE affects LOAD risks is unknown. We hypothesize that ApoE attenuation of LOAD resiliency or vulnerability has a neurodevelopmental origin via changing brain network architecture. We investigated the brain network structure in adult ApoE knock out (ApoE KO) and wild-type (WT) mice with diffusion tensor imaging (DTI) followed by graph theory to delineate brain network topology. Left and right hemisphere connectivity revealed significant differences in number of connections between the hippocampus, amygdala, caudate putamen and other brain regions. Network topology based on the graph theory of ApoE KO demonstrated decreased functional integration, network efficiency, and network segregation between the hippocampus and amygdala and the rest of the brain, compared to those in WT counterparts. Our data show that brain network developed differently in ApoE KO and WT mice at 5 months of age, especially in the network reflected in the hippocampus, amygdala, and caudate putamen. This indicates that ApoE is involved in brain network development which might modulate LOAD risks via changing brain network structures.
Collapse
Affiliation(s)
- Margaret Caroline Stapleton
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Stefan Paul Koch
- Charité 3R | Replace, Reduce, Refine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Devin Raine Everaldo Cortes
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel Wyman
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Kristina E. Schwab
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Susanne Mueller
- Charité 3R | Replace, Reduce, Refine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Philipp Boehm-Sturm
- Charité 3R | Replace, Reduce, Refine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yijen Lin Wu
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Andrade-Guerrero J, Rodríguez-Arellano P, Barron-Leon N, Orta-Salazar E, Ledesma-Alonso C, Díaz-Cintra S, Soto-Rojas LO. Advancing Alzheimer's Therapeutics: Exploring the Impact of Physical Exercise in Animal Models and Patients. Cells 2023; 12:2531. [PMID: 37947609 PMCID: PMC10648553 DOI: 10.3390/cells12212531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Alzheimer's disease (AD) is the main neurodegenerative disorder characterized by several pathophysiological features, including the misfolding of the tau protein and the amyloid beta (Aβ) peptide, neuroinflammation, oxidative stress, synaptic dysfunction, metabolic alterations, and cognitive impairment. These mechanisms collectively contribute to neurodegeneration, necessitating the exploration of therapeutic approaches with multiple targets. Physical exercise has emerged as a promising non-pharmacological intervention for AD, with demonstrated effects on promoting neurogenesis, activating neurotrophic factors, reducing Aβ aggregates, minimizing the formation of neurofibrillary tangles (NFTs), dampening inflammatory processes, mitigating oxidative stress, and improving the functionality of the neurovascular unit (NVU). Overall, the neuroprotective effects of exercise are not singular, but are multi-targets. Numerous studies have investigated physical exercise's potential in both AD patients and animal models, employing various exercise protocols to elucidate the underlying neurobiological mechanisms and effects. The objective of this review is to analyze the neurological therapeutic effects of these exercise protocols in animal models and compare them with studies conducted in AD patients. By translating findings from different approaches, this review aims to identify opportune, specific, and personalized therapeutic windows, thus advancing research on the use of physical exercise with AD patients.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Paola Rodríguez-Arellano
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Nayeli Barron-Leon
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Erika Orta-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| |
Collapse
|
8
|
Jullienne A, Szu JI, Quan R, Trinh MV, Norouzi T, Noarbe BP, Bedwell AA, Eldridge K, Persohn SC, Territo PR, Obenaus A. Cortical cerebrovascular and metabolic perturbations in the 5xFAD mouse model of Alzheimer's disease. Front Aging Neurosci 2023; 15:1220036. [PMID: 37533765 PMCID: PMC10392850 DOI: 10.3389/fnagi.2023.1220036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction The 5xFAD mouse is a popular model of familial Alzheimer's disease (AD) that is characterized by early beta-amyloid (Aβ) deposition and cognitive decrements. Despite numerous studies, the 5xFAD mouse has not been comprehensively phenotyped for vascular and metabolic perturbations over its lifespan. Methods Male and female 5xFAD and wild type (WT) littermates underwent in vivo 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging at 4, 6, and 12 months of age to assess regional glucose metabolism. A separate cohort of mice (4, 8, 12 months) underwent "vessel painting" which labels all cerebral vessels and were analyzed for vascular characteristics such as vessel density, junction density, vessel length, network complexity, number of collaterals, and vessel diameter. Results With increasing age, vessels on the cortical surface in both 5xFAD and WT mice showed increased vessel length, vessel and junction densities. The number of collateral vessels between the middle cerebral artery (MCA) and the anterior and posterior cerebral arteries decreased with age but collateral diameters were significantly increased only in 5xFAD mice. MCA total vessel length and junction density were decreased in 5xFAD mice compared to WT at 4 months. Analysis of 18F-FDG cortical uptake revealed significant differences between WT and 5xFAD mice spanning 4-12 months. Broadly, 5xFAD males had significantly increased 18F-FDG uptake at 12 months compared to WT mice. In most cortical regions, female 5xFAD mice had reduced 18F-FDG uptake compared to WT across their lifespan. Discussion While the 5xFAD mouse exhibits AD-like cognitive deficits as early as 4 months of age that are associated with increasing Aβ deposition, we only found significant differences in cortical vascular features in males, not in females. Interestingly, 5xFAD male and female mice exhibited opposite effects in 18F-FDG uptake. The MCA supplies blood to large portions of the somatosensory cortex and portions of motor and visual cortex and increased vessel length alongside decreased collaterals which coincided with higher metabolic rates in 5xFAD mice. Thus, a potential mismatch between metabolic demand and vascular delivery of nutrients in the face of increasing Aβ deposition could contribute to the progressive cognitive deficits seen in the 5xFAD mouse model.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Jenny I. Szu
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ryan Quan
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Michelle V. Trinh
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Tannoz Norouzi
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Brenda P. Noarbe
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Amanda A. Bedwell
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Kierra Eldridge
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Scott C. Persohn
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Paul R. Territo
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
9
|
Liang C, Nguyen GA, Danh TB, Sandhu AK, Melkonyan LL, Syed AU, Mukherjee J. Abnormal [ 18 F]NIFENE binding in transgenic 5xFAD mouse model of Alzheimer's disease: In vivo PET/CT imaging studies of α4β2* nicotinic acetylcholinergic receptors and in vitro correlations with Aβ plaques. Synapse 2023; 77:e22265. [PMID: 36749986 PMCID: PMC10148164 DOI: 10.1002/syn.22265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Since cholinergic dysfunction has been implicated in Alzheimer's disease (AD), the effects of Aβ plaques on nicotinic acetylcholine receptors (nAChRs) α4β2* subtype were studied using the transgenic 5xFAD mouse model of AD. Using the PET radiotracer [18 F]nifene for α4β2* nAChRs, in vitro autoradiography and in vivo PET/CT studies in 5xFAD mice were carried out and compared with wild-type (C57BL/6) mice. Ratios of [18 F]nifene binding in brain regions versus cerebellum (CB) in 5xFAD mice brains were for thalamus (TH) = 17, hippocampus-subiculum = 7, frontal cortex (FC) = 5.5, and striatum = 4.7. [125 I]IBETA and immunohistochemistry (IHC) in 5xFAD brain slices confirmed Aβ plaques. Nicotine and acetylcholine displaced [18 F]nifene in 5xFAD mice (IC50 nicotine = 31-73 nM; ACh = 38-83 nM) and C57BL/6 (IC50 nicotine = 16-18 nM; ACh = 34-55 nM). Average [18 F]nifene SUVR (CB as reference) in 5xFAD mice was significantly higher in FC = 3.04 compared to C57BL/6 mice FC = 1.92 (p = .001), whereas TH difference between 5xFAD mice (SUVR = 2.58) and C57BL/6 mice (SUVR = 2.38) was not significant. Nicotine-induced dissociation half life (t1/2 ) of [18 F]nifene for TH were 37 min for 5xFAD mice and 26 min for C57BL/6 mice. Dissociation half life for FC in C57BL/6 mice was 77 min , while no dissociation of [18 F]nifene occurred in the medial prefrontal cortex (mFC) of 5xFAD mice. Coregistration of [18 F]nifene PET with MR suggested that the mPFC, and anterior cingulate (AC) regions exhibited high uptake in 5xFAD mice compared to C57BL/6 mice. Ex vivo [18 F]nifene and in vitro [125 I]IBETA Aβ plaque autoradiography after in vivo PET/CT scan of 5xFAD mouse brain were moderately correlated (r2 = 0.68). In conclusion, 5xFAD mice showed increased non-displaceable [18 F]nifene binding in mPFC.
Collapse
Affiliation(s)
- Christopher Liang
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, California, USA
| | - Grace A Nguyen
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, California, USA
| | - Tram B Danh
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, California, USA
| | - Anoopraj K Sandhu
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, California, USA
| | - Lusine L Melkonyan
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, California, USA
| | - Amina U Syed
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, California, USA
| | - Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, California, USA
| |
Collapse
|
10
|
Yoo CH, Kim J, Baek HM, Chang KA, Choe BY. Neurodegenerative Changes in the Brains of the 5xFAD Alzheimer’s Disease Model Mice Investigated by High-Field and High-Resolution Magnetic Resonance Imaging and Multi-Nuclei Magnetic Resonance Spectroscopy. Int J Mol Sci 2023; 24:ijms24065073. [PMID: 36982146 PMCID: PMC10049146 DOI: 10.3390/ijms24065073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
This study aimed to investigate morphological and metabolic changes in the brains of 5xFAD mice. Structural magnetic resonance imaging (MRI) and 1H magnetic resonance spectroscopy (MRS) were obtained in 10- and 14-month-old 5xFAD and wild-type (WT) mice, while 31P MRS scans were acquired in 11-month-old mice. Significantly reduced gray matter (GM) was identified by voxel-based morphometry (VBM) in the thalamus, hypothalamus, and periaqueductal gray areas of 5xFAD mice compared to WT mice. Significant reductions in N-acetyl aspartate and elevation of myo-Inositol were revealed by the quantification of MRS in the hippocampus of 5xFAD mice, compared to WT. A significant reduction in NeuN-positive cells and elevation of Iba1- and GFAP-positive cells supported this observation. The reduction in phosphomonoester and elevation of phosphodiester was observed in 11-month-old 5xFAD mice, which might imply a sign of disruption in the membrane synthesis. Commonly reported 1H MRS features were replicated in the hippocampus of 14-month-old 5xFAD mice, and a sign of disruption in the membrane synthesis and elevation of breakdown were revealed in the whole brain of 5xFAD mice by 31P MRS. GM volume reduction was identified in the thalamus, hypothalamus, and periaqueductal gray areas of 5xFAD mice.
Collapse
Affiliation(s)
- Chi-Hyeon Yoo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jinho Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Correspondence: (H.-M.B.); (K.-A.C.)
| | - Keun-A Chang
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Correspondence: (H.-M.B.); (K.-A.C.)
| | - Bo-Young Choe
- Department of Biomedicine & Health Sciences, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
11
|
Lopes van den Broek S, Sehlin D, Andersen JV, Aldana BI, Beschörner N, Nedergaard M, Knudsen GM, Syvänen S, Herth MM. The Alzheimer's disease 5xFAD mouse model is best suited to investigate pretargeted imaging approaches beyond the blood-brain barrier. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:1001722. [PMID: 39390994 PMCID: PMC11466232 DOI: 10.3389/fnume.2022.1001722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/08/2022] [Indexed: 10/12/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, with an increasing prevalence. Currently, there is no ideal diagnostic molecular imaging agent for diagnosing AD. Antibodies (Abs) have been proposed to close this gap as they can bind selectively and with high affinity to amyloid β (Aβ)-one of the molecular hallmarks of AD. Abs can even be designed to selectively bind Aβ oligomers or isoforms, which are difficult to target with small imaging agents. Conventionally, Abs must be labeled with long-lived radionuclides which typically results in in high radiation burden to healthy tissue. Pretargeted imaging could solve this challenge as it allows for the use of short-lived radionuclides. To develop pretargeted imaging tools that can enter the brain, AD mouse models are useful as they allow testing of the imaging approach in a relevant animal model that could predict its clinical applicability. Several mouse models for AD have been developed with different characteristics. Commonly used models are: 5xFAD, APP/PS1 and tg-ArcSwe transgenic mice. In this study, we aimed to identify which of these models were best suited to investigate pretargeted imaging approaches beyond the blood brain barrier. We evaluated this by pretargeted autoradiography using the Aβ-targeting antibody 3D6 and an 111In-labeled Tz. Evaluation criteria were target-to-background ratios and accessibility. APP/PS1 mice showed Aβ accumulation in high and low binding brain regions and is as such less suitable for pretargeted purposes. 5xFAD and tg-ArcSwe mice showed similar uptake in high binding regions whereas low uptake in low binding regions and are better suited to evaluate pretargeted imaging approaches. 5xFAD mice are advantaged over tg-ArcSwe mice as pathology can be traced early (6 months compared to 18 months of age) and as 5xFAD mice are commercially available.
Collapse
Affiliation(s)
- Sara Lopes van den Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dag Sehlin
- Rudbeck Laboratory, Department of Public Health and Caring Sciences, University of Uppsala, Uppsala, Sweden
| | - Jens V. Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca I. Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natalie Beschörner
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M. Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Stina Syvänen
- Rudbeck Laboratory, Department of Public Health and Caring Sciences, University of Uppsala, Uppsala, Sweden
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine / PET, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
12
|
Maharjan S, Tsai AP, Lin PB, Ingraham C, Jewett MR, Landreth GE, Oblak AL, Wang N. Age-dependent microstructure alterations in 5xFAD mice by high-resolution diffusion tensor imaging. Front Neurosci 2022; 16:964654. [PMID: 36061588 PMCID: PMC9428354 DOI: 10.3389/fnins.2022.964654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the age-dependent microstructure changes in 5xFAD mice using high-resolution diffusion tensor imaging (DTI). Methods The 5xFAD mice at 4, 7.5, and 12 months and the wild-type controls at 4 months were scanned at 9.4T using a 3D echo-planar imaging (EPI) pulse sequence with the isotropic spatial resolution of 100 μm. The b-value was 3000 s/mm2 for all the diffusion MRI scans. The samples were also acquired with a gradient echo pulse sequence at 50 μm isotropic resolution. The microstructure changes were quantified with DTI metrics, including fractional anisotropy (FA) and mean diffusivity (MD). The conventional histology was performed to validate with MRI findings. Results The FA values (p = 0.028) showed significant differences in the cortex between wild-type (WT) and 5xFAD mice at 4 months, while hippocampus, anterior commissure, corpus callosum, and fornix showed no significant differences for either FA and MD. FA values of 5xFAD mice gradually decreased in cortex (0.140 ± 0.007 at 4 months, 0.132 ± 0.008 at 7.5 months, 0.126 ± 0.013 at 12 months) and fornix (0.140 ± 0.007 at 4 months, 0.132 ± 0.008 at 7.5 months, 0.126 ± 0.013 at 12 months) with aging. Both FA (p = 0.029) and MD (p = 0.037) demonstrated significant differences in corpus callosum between 4 and 12 months age old. FA and MD were not significantly different in the hippocampus or anterior commissure. The age-dependent microstructure alterations were better captured by FA when compared to MD. Conclusion FA showed higher sensitivity to monitor amyloid deposition in 5xFAD mice. DTI may be utilized as a sensitive biomarker to monitor beta-amyloid progression for preclinical studies.
Collapse
Affiliation(s)
- Surendra Maharjan
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
| | - Andy P. Tsai
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Peter B. Lin
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Cynthia Ingraham
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Megan R. Jewett
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
| | - Gary E. Landreth
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, IN, United States
| | - Adrian L. Oblak
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- *Correspondence: Nian Wang,
| |
Collapse
|
13
|
Jullienne A, Quan R, Szu JI, Trinh MV, Behringer EJ, Obenaus A. Progressive Vascular Abnormalities in the Aging 3xTg-AD Mouse Model of Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081967. [PMID: 36009514 PMCID: PMC9405684 DOI: 10.3390/biomedicines10081967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular dysfunction and structural abnormalities in Alzheimer’s disease (AD) are known to contribute to the progression of the pathology, and studies have tended to ignore the role of the vasculature in AD progression. We utilized the 3xTg-AD mouse model of AD to examine individual cerebral vessels and the cortical vascular network across the lifespan. Our vessel painting approach was used to label the entire cortical vasculature, followed by epifluorescence microscopy. The middle cerebral artery (MCA) tree was assessed with confocal microscopy, and a new method was developed to assess branching patterns as a measure of aging-related changes. We found that vascular remodeling was profoundly altered at 4–6 months of age, when the 3xTg-AD mouse is known to transition to cognitive impairment and Aβ deposition in both sexes. Analysis of vascular features (density, junctions, length) of the MCA territory highlighted sex-dependent differences across the 3xTg-AD mouse lifespan, with no alterations in branching patterns. Our current cerebrovascular angioarchitectural analyses demonstrate progressive alterations in individual cortical vessels, as well as in the vascular network of the cortex. These new findings advance our understanding of brain anatomy and physiology in the 3xTg-AD mouse, while potentially identifying unique diagnostic signatures of AD progression.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Ryan Quan
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Jenny I. Szu
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Michelle V. Trinh
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Erik J. Behringer
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92350, USA
- Correspondence:
| |
Collapse
|