1
|
Liu J, Yang J, Wu Q, Fang Z, Wang T, Wang Z, Xu D. Review of osteokines in spinal cord injury: potential biomarkers during rehabilitation. J Orthop Surg Res 2025; 20:64. [PMID: 39827357 PMCID: PMC11742232 DOI: 10.1186/s13018-024-05415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
After spinal cord injury (SCI), mechanical unloading, denervation, as well as negative changes in blood supply, inflammation state, and hormone levels produce significant negative effects on bone density, leading to a high prevalence of osteoporosis after SCI. It has been recently discovered that skeletal bone also has endocrine functions. Osteokines, secreted from bone tissue, could play multiple roles in regulating bone density, muscle mass, glucose metabolism, and functions of the central nervous system-changes in the osteokine levels after SCI have been detected. Therefore, bone density and osteokine levels should be stressed in clinical settings. Clinical treatment measures for bone loss after SCI include exercise training, physical agent therapy, acupuncture, and so on. According to previous studies, these treatments could affect the expression levels of osteokines. In conclusion, bone loss and changes in osteokines after SCI are worthy of great attention during the rehabilitation of SCI. Osteokines could become biomarkers during SCI rehabilitation, reflecting both bone density and systemic functions. This review summarized recent findings regarding bone loss after SCI, changes in osteokines, and the effect of rehabilitation therapies, with a particular emphasis on the local and systemic regulatory roles of osteokines, as well as their potential as biomarkers during SCI rehabilitation.
Collapse
Affiliation(s)
- Jing Liu
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Qinhuai District, Hanzhong Road 155th, Nanjing, 210029, China
| | - Jingyi Yang
- Rehabilitation therapy department, School of Acupuncture-Moxibustion and Tuina of Nanjing, University of Chinese Medicine·School of Health Preservation and Rehabilitation of Nanjing University of Chinese Medicine, Qixia District, Xianlin Road 138th, Nanjing, 210023, China
| | - Qi Wu
- Rehabilitation Medicine School, Nanjing Medical University, Nanjing, 210029, China
| | - Zixuan Fang
- Rehabilitation therapy department, School of Acupuncture-Moxibustion and Tuina of Nanjing, University of Chinese Medicine·School of Health Preservation and Rehabilitation of Nanjing University of Chinese Medicine, Qixia District, Xianlin Road 138th, Nanjing, 210023, China
| | - Tong Wang
- Rehabilitation Medicine School, Nanjing Medical University, Nanjing, 210029, China.
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Gulou District, Guangzhou Road 300th, Nanjing, 210029, China.
| | - Zun Wang
- Rehabilitation therapy department, School of Acupuncture-Moxibustion and Tuina of Nanjing, University of Chinese Medicine·School of Health Preservation and Rehabilitation of Nanjing University of Chinese Medicine, Qixia District, Xianlin Road 138th, Nanjing, 210023, China.
- Rehabilitation Medicine School, Nanjing Medical University, Nanjing, 210029, China.
| | - Daoming Xu
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Qinhuai District, Hanzhong Road 155th, Nanjing, 210029, China.
| |
Collapse
|
2
|
Karacan I, Türker KS. Exploring neuronal mechanisms of osteosarcopenia in older adults. J Physiol 2024. [PMID: 39119811 DOI: 10.1113/jp285666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Until recently, research on the pathogenesis and treatment of osteoporosis and sarcopenia has primarily focused on local and systemic humoral mechanisms, often overlooking neuronal mechanisms. However, there is a growing body of literature on the neuronal regulation of bone and skeletal muscle structure and function, which may provide insights into the pathogenesis of osteosarcopenia. This review aims to integrate these neuronal regulatory mechanisms to form a comprehensive understanding and inspire future research that could uncover novel strategies for preventing and treating osteosarcopenia. Specifically, the review explores the functional adaptation of weight-bearing bone to mechanical loading throughout evolutionary development, from Wolff's law and Frost's mechanostat theory to the mosaic hypothesis, which emphasizes neuronal regulation. The recently introduced bone osteoregulation reflex points to the importance of the osteocytic mechanoreceptive network as a receptor in this neuronal regulation mechanism. Finally, the review focuses on the bone myoregulation reflex, which is known as a mechanism by which bone loading regulates muscle functions neuronally. Considering the ageing-related regressive changes in the nerve fibres that provide both structural and functional regulation in bone and skeletal muscle tissue and the bone and muscle tissues they innervate, it is suggested that neuronal mechanisms might play a central role in explaining osteosarcopenia in older adults.
Collapse
Affiliation(s)
- Ilhan Karacan
- Physical Medicine and Rehabilitation Department, Hamidiye Medical School, Health Science University Istanbul, Istanbul, Turkey
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Kemal Sıtkı Türker
- Physiology, Faculty of Dentistry, Istanbul Gelisim University, Istanbul, Turkey
| |
Collapse
|
3
|
Franco-Obregón A, Tai YK. Are Aminoglycoside Antibiotics TRPing Your Metabolic Switches? Cells 2024; 13:1273. [PMID: 39120305 PMCID: PMC11311832 DOI: 10.3390/cells13151273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Transient receptor potential (TRP) channels are broadly implicated in the developmental programs of most tissues. Amongst these tissues, skeletal muscle and adipose are noteworthy for being essential in establishing systemic metabolic balance. TRP channels respond to environmental stimuli by supplying intracellular calcium that instigates enzymatic cascades of developmental consequence and often impinge on mitochondrial function and biogenesis. Critically, aminoglycoside antibiotics (AGAs) have been shown to block the capacity of TRP channels to conduct calcium entry into the cell in response to a wide range of developmental stimuli of a biophysical nature, including mechanical, electromagnetic, thermal, and chemical. Paradoxically, in vitro paradigms commonly used to understand organismal muscle and adipose development may have been led astray by the conventional use of streptomycin, an AGA, to help prevent bacterial contamination. Accordingly, streptomycin has been shown to disrupt both in vitro and in vivo myogenesis, as well as the phenotypic switch of white adipose into beige thermogenic status. In vivo, streptomycin has been shown to disrupt TRP-mediated calcium-dependent exercise adaptations of importance to systemic metabolism. Alternatively, streptomycin has also been used to curb detrimental levels of calcium leakage into dystrophic skeletal muscle through aberrantly gated TRPC1 channels that have been shown to be involved in the etiology of X-linked muscular dystrophies. TRP channels susceptible to AGA antagonism are critically involved in modulating the development of muscle and adipose tissues that, if administered to behaving animals, may translate to systemwide metabolic disruption. Regenerative medicine and clinical communities need to be made aware of this caveat of AGA usage and seek viable alternatives, to prevent contamination or infection in in vitro and in vivo paradigms, respectively.
Collapse
Affiliation(s)
- Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, 8057 Zürich, Switzerland
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
4
|
Meas SJ, Daire GM, Friedman MA, DeNapoli R, Ghosh P, Farr JN, Donahue HJ. A comparison of bone microarchitectural and transcriptomic changes in murine long bones in response to hindlimb unloading and aging. Bone 2024; 179:116973. [PMID: 37996046 PMCID: PMC11651238 DOI: 10.1016/j.bone.2023.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Age- and disuse-related bone loss both result in decreases in bone mineral density, cortical thickness, and trabecular thickness and connectivity. Disuse induces changes in the balance of bone formation and bone resorption like those seen with aging. There is a need to experimentally compare these two mechanisms at a structural and transcriptomic level to better understand how they may be similar or different. Bone microarchitecture and biomechanical properties were compared between 6- and 22-month-old C57BL/6 J male control mice and 6-month-old mice that were hindlimb unloaded (HLU) for 3 weeks. Epiphyseal trabecular bone was the compartment most affected by HLU and demonstrated an intermediate bone phenotype between age-matched controls and aged controls. RNA extracted from whole-bone marrow-flushed tibiae was sequenced and analyzed. Differential gene expression analysis additionally included 4-month-old male mice unloaded for 3 weeks compared to age-matched controls. Gene ontology analysis demonstrated that there were age-dependent differences in differentially expressed genes in young adult mice. Genes related to downregulation of cellular processes were most affected in 4-month-old mice after disuse whereas those related to mitochondrial function were most affected in 6-month-old mice. Cell-cycle transition was downregulated with aging. A publicly available dataset (GSE169292) from 3-month female C57BL/6 N mice unloaded for 7 days was included in ingenuity pathway analysis (IPA) with the other datasets. IPA was used to identify the leading canonical pathways and upstream regulators in each HLU age group. IPA identified "Senescence Pathway" as the second leading canonical pathway enriched in mice exposed to HLU. HLU induced activation of the senescence pathway in 3-month and 4-month-old mice but inhibited it in 6-month-old mice. In conclusion, we demonstrate that hindlimb unloading and aging initiate similar changes in bone microarchitecture and gene expression. However, aging is responsible for more significant transcriptome and tissue-level changes compared to hindlimb unloading.
Collapse
Affiliation(s)
- Steven J Meas
- Virginia Commonwealth University, Richmond, VA 23284, USA.
| | | | | | | | - Preetam Ghosh
- Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Joshua N Farr
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
5
|
Zhang J, Gao Y, Yan J. Roles of Myokines and Muscle-Derived Extracellular Vesicles in Musculoskeletal Deterioration under Disuse Conditions. Metabolites 2024; 14:88. [PMID: 38392980 PMCID: PMC10891558 DOI: 10.3390/metabo14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Prolonged inactivity and disuse conditions, such as those experienced during spaceflight and prolonged bedrest, are frequently accompanied by detrimental effects on the motor system, including skeletal muscle atrophy and bone loss, which greatly increase the risk of osteoporosis and fractures. Moreover, the decrease in glucose and lipid utilization in skeletal muscles, a consequence of muscle atrophy, also contributes to the development of metabolic syndrome. Clarifying the mechanisms involved in disuse-induced musculoskeletal deterioration is important, providing therapeutic targets and a scientific foundation for the treatment of musculoskeletal disorders under disuse conditions. Skeletal muscle, as a powerful endocrine organ, participates in the regulation of physiological and biochemical functions of local or distal tissues and organs, including itself, in endocrine, autocrine, or paracrine manners. As a motor organ adjacent to muscle, bone tissue exhibits a relative lag in degenerative changes compared to skeletal muscle under disuse conditions. Based on this phenomenon, roles and mechanisms involved in the communication between skeletal muscle and bone, especially from muscle to bone, under disuse conditions have attracted widespread attention. In this review, we summarize the roles and regulatory mechanisms of muscle-derived myokines and extracellular vesicles (EVs) in the occurrence of muscle atrophy and bone loss under disuse conditions, as well as discuss future perspectives based on existing research.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiangwei Yan
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| |
Collapse
|
6
|
Melica ME, Cialdai F, La Regina G, Risaliti C, Dafichi T, Peired AJ, Romagnani P, Monici M, Lasagni L. Modeled microgravity unravels the roles of mechanical forces in renal progenitor cell physiology. Stem Cell Res Ther 2024; 15:20. [PMID: 38233961 PMCID: PMC10795253 DOI: 10.1186/s13287-024-03633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND The glomerulus is a highly complex system, composed of different interdependent cell types that are subjected to various mechanical stimuli. These stimuli regulate multiple cellular functions, and changes in these functions may contribute to tissue damage and disease progression. To date, our understanding of the mechanobiology of glomerular cells is limited, with most research focused on the adaptive response of podocytes. However, it is crucial to recognize the interdependence between podocytes and parietal epithelial cells, in particular with the progenitor subset, as it plays a critical role in various manifestations of glomerular diseases. This highlights the necessity to implement the analysis of the effects of mechanical stress on renal progenitor cells. METHODS Microgravity, modeled by Rotary Cell Culture System, has been employed as a system to investigate how renal progenitor cells respond to alterations in the mechanical cues within their microenvironment. Changes in cell phenotype, cytoskeleton organization, cell proliferation, cell adhesion and cell capacity for differentiation into podocytes were analyzed. RESULTS In modeled microgravity conditions, renal progenitor cells showed altered cytoskeleton and focal adhesion organization associated with a reduction in cell proliferation, cell adhesion and spreading capacity. Moreover, mechanical forces appeared to be essential for renal progenitor differentiation into podocytes. Indeed, when renal progenitors were exposed to a differentiative agent in modeled microgravity conditions, it impaired the acquisition of a complex podocyte-like F-actin cytoskeleton and the expression of specific podocyte markers, such as nephrin and nestin. Importantly, the stabilization of the cytoskeleton with a calcineurin inhibitor, cyclosporine A, rescued the differentiation of renal progenitor cells into podocytes in modeled microgravity conditions. CONCLUSIONS Alterations in the organization of the renal progenitor cytoskeleton due to unloading conditions negatively affect the regenerative capacity of these cells. These findings strengthen the concept that changes in mechanical cues can initiate a pathophysiological process in the glomerulus, not only altering podocyte actin cytoskeleton, but also extending the detrimental effect to the renal progenitor population. This underscores the significance of the cytoskeleton as a druggable target for kidney diseases.
Collapse
Affiliation(s)
- Maria Elena Melica
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Gilda La Regina
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Chiara Risaliti
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Tommaso Dafichi
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Anna Julie Peired
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Paola Romagnani
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| | - Laura Lasagni
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| |
Collapse
|
7
|
Manon J, Saint-Guillain M, Pletser V, Buckland DM, Vico L, Dobney W, Baatout S, Wain C, Jacobs J, Comein A, Drouet S, Meert J, Casla IS, Chamart C, Vanderdonckt J, Cartiaux O, Cornu O. Adequacy of in-mission training to treat tibial shaft fractures in mars analogue testing. Sci Rep 2023; 13:18072. [PMID: 37872309 PMCID: PMC10593937 DOI: 10.1038/s41598-023-43878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023] Open
Abstract
Long bone fractures are a concern in long-duration exploration missions (LDEM) where crew autonomy will exceed the current Low Earth Orbit paradigm. Current crew selection assumptions require extensive complete training and competency testing prior to flight for off-nominal situations. Analogue astronauts (n = 6) can be quickly trained to address a single fracture pattern and then competently perform the repair procedure. An easy-to-use external fixation (EZExFix) was employed to repair artificial tibial shaft fractures during an inhabited mission at the Mars Desert Research Station (Utah, USA). Bone repair safety zones were respected (23/24), participants achieved 79.2% repair success, and median completion time was 50.04 min. Just-in-time training in-mission was sufficient to become autonomous without pre-mission medical/surgical/mechanical education, regardless of learning conditions (p > 0.05). Similar techniques could be used in LDEM to increase astronauts' autonomy in traumatic injury treatment and lower skill competency requirements used in crew selection.
Collapse
Affiliation(s)
- Julie Manon
- Université Catholique de Louvain (UCLouvain), Louvain-La-Neuve, Belgium.
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200, Brussels, Belgium.
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Brussels, Belgium.
- Orthopaedic Surgery Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
- Crew 227 - Mission Analogue Research Simulation (M.A.R.S. UCLouvain) - Mars Desert Research Station (MDRS), Utah, USA.
| | | | | | - Daniel Miller Buckland
- Human System Risk Board (HSRB), NASA Johnson Space Center, Houston, TX, USA
- Department of Emergency Medicine, Duke University, North Carolina, USA
| | - Laurence Vico
- INSERM, Mines Saint-Étienne, Univ Jean Monnet, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - William Dobney
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- School of Aeronautical, Automotive, Chemical and Materials Engineering, Loughborough University, Loughborough, UK
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Cyril Wain
- Crew 227 - Mission Analogue Research Simulation (M.A.R.S. UCLouvain) - Mars Desert Research Station (MDRS), Utah, USA
| | - Jean Jacobs
- Université Catholique de Louvain (UCLouvain), Louvain-La-Neuve, Belgium
- Crew 227 - Mission Analogue Research Simulation (M.A.R.S. UCLouvain) - Mars Desert Research Station (MDRS), Utah, USA
| | - Audrey Comein
- Université Catholique de Louvain (UCLouvain), Louvain-La-Neuve, Belgium
- Crew 227 - Mission Analogue Research Simulation (M.A.R.S. UCLouvain) - Mars Desert Research Station (MDRS), Utah, USA
| | - Sirga Drouet
- Université Catholique de Louvain (UCLouvain), Louvain-La-Neuve, Belgium
- Crew 227 - Mission Analogue Research Simulation (M.A.R.S. UCLouvain) - Mars Desert Research Station (MDRS), Utah, USA
| | - Julien Meert
- Université Catholique de Louvain (UCLouvain), Louvain-La-Neuve, Belgium
- Crew 227 - Mission Analogue Research Simulation (M.A.R.S. UCLouvain) - Mars Desert Research Station (MDRS), Utah, USA
| | - Ignacio Sanchez Casla
- Université Catholique de Louvain (UCLouvain), Louvain-La-Neuve, Belgium
- Crew 227 - Mission Analogue Research Simulation (M.A.R.S. UCLouvain) - Mars Desert Research Station (MDRS), Utah, USA
| | - Cheyenne Chamart
- Université Catholique de Louvain (UCLouvain), Louvain-La-Neuve, Belgium
- Crew 227 - Mission Analogue Research Simulation (M.A.R.S. UCLouvain) - Mars Desert Research Station (MDRS), Utah, USA
| | - Jean Vanderdonckt
- Université Catholique de Louvain (UCLouvain), Louvain-La-Neuve, Belgium
| | - Olivier Cartiaux
- Department of Health Engineering, ECAM Brussels Engineering School, Haute Ecole "ICHEC-ECAM-ISFSC", Brussels, Belgium
| | - Olivier Cornu
- Université Catholique de Louvain (UCLouvain), Louvain-La-Neuve, Belgium
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Brussels, Belgium
- Orthopaedic Surgery Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
8
|
Meas SJ, Daire GM, Friedman MA, DeNapoli R, Ghosh P, Farr JN, Donahue HJ. Hindlimb Unloading Induces Bone Microarchitectural and Transcriptomic Changes in Murine Long Bones in an Age-Dependent Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561510. [PMID: 37873408 PMCID: PMC10592678 DOI: 10.1101/2023.10.09.561510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Age and disuse-related bone loss both result in decreases in bone mineral density, cortical thickness, and trabecular thickness and connectivity. Disuse induces physiological changes in bone like those seen with aging. Bone microarchitecture and biomechanical properties were compared between 6- and 22-month-old C57BL/6J male control mice and 6-month-old mice that were hindlimb unloaded (HLU) for 3 weeks. Epiphyseal trabecular bone was the compartment most affected by HLU and demonstrated an intermediate bone phenotype between age-matched controls and aged controls. RNA extracted from whole-bone marrow-flushed tibiae was sequenced and analyzed. Differential gene expression analysis additionally included 4-month-old male mice unloaded for 3 weeks compared to age-matched controls. Gene ontology analysis demonstrated that there were age-dependent differences in differentially expressed genes. Genes related to downregulation of cellular processes were most affected in 4-month-old mice after disuse whereas those related to mitochondrial function were most affected in 6- month-old mice. Cell-cycle transition was downregulated with aging. A publicly available dataset (GSE169292) from 3-month female C57BL/6N mice unloaded for 7 days was included in ingenuity pathway analysis with the other datasets. IPA was used to identify the leading canonical pathways and upstream regulators in each HLU age group. IPA identified "Senescence Pathway" as the second leading canonical pathway enriched in mice exposed to HLU. HLU induced activation of the senescence pathway in 3- month and 4-month-old mice but inhibited it in 6-month-old mice. In conclusion, we demonstrate that hindlimb unloading and aging initiate similar changes in bone microarchitecture and gene expression. However, aging is responsible for more significant transcriptome and tissue-level changes compared to hindlimb unloading. Highlights Epiphyseal trabecular bone is most susceptible to hindlimb unloading.Hindlimb unloaded limbs resemble an intermediate phenotype between age-matched and aged controls.Hindlimb unloading induces gene expression changes that are age dependent and may lead to inflammation and/or mitochondrial dysfunction depending on context.Younger mice (3-4 months) activate the senescence pathway upon hindlimb unloading, whereas skeletally mature (6 months) mice inhibit it.
Collapse
|
9
|
Kitcharanant N, Chattipakorn N, Chattipakorn SC. The effect of intermittent parathyroid hormone on bone lengthening: current evidence to inform future effective interventions. Osteoporos Int 2023; 34:1657-1675. [PMID: 37286663 DOI: 10.1007/s00198-023-06809-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE Recent studies have demonstrated the positive effects of parathyroid hormone (PTH) on bone healing, and findings support the use of PTH to accelerate bone healing following distraction osteogenesis. The goal of this review was to compile and discuss the mechanisms potentially underlying the effects of PTH on newly formed bone following a bone-lengthening procedure incorporating all relevant evidence in both animal and clinical studies. METHODS This review summarized all evidence from in vivo to clinical studies regarding the effects of PTH administration on a bone-lengthening model. In addition, a comprehensive evaluation of what is currently known regarding the potential mechanisms underlying the potential benefits of PTH in bone lengthening was presented. Some controversial findings regarding the optimal dosage and timing of administration of PTH in this model were also discussed. RESULTS The findings demonstrated that the potential mechanisms associated with the action of PTH on the acceleration of bone regeneration after distraction osteogenesis are involvement in mesenchymal cell proliferation and differentiation, endochondral bone formation, membranous bone formation, and callus remodeling. CONCLUSIONS In the last 20 years, a number of animal and clinical studies have indicated that there is a prospective role for PTH treatment in human bone lengthening as an anabolic agent that accelerates the mineralization and strength of the regenerated bone. Therefore, PTH treatment can be viewed as a potential treatment to increase the amount of new calcified bone and the mechanical strength of the bone in order to shorten the consolidation stage after bone lengthening.
Collapse
Affiliation(s)
- Nitchanant Kitcharanant
- Department of Orthopaedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
10
|
Thomasius F, Pesta D, Rittweger J. Adjuvant pharmacological strategies for the musculoskeletal system during long-term space missions. Br J Clin Pharmacol 2023. [PMID: 37559171 DOI: 10.1111/bcp.15877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Despite 2 h of daily exercise training, muscle wasting and bone loss are still present after 6-month missions to the international space station. Some crew members lose bone much faster than others. In preparation for missions to the Moon and Mars, space agencies are therefore reviewing their countermeasure portfolios. Here, we discuss the potential of current pharmacological strategies. Bone loss in space is fuelled by bone resorption. Alendronate, an oral bisphosphonate, reduced bone losses in experimental bed rest and space. However, gastrointestinal side effects precluded its further utilization in space. Zoledronate (a potent bisphosphonate), denosumab (RANKL antagonist) and romosozumab (sclerostin antagonist) are all administered via injection. They effectively suppress bone resorption and are routinely prescribed against osteoporosis. Their serious adverse effects, namely, osteonecrosis of the jaw and atypical femur fractures occur very rarely when the usage is limited to 1 or 2 years. Hence, utilization of one of these compounds may outweigh the bone risks of space travelling, in particular in those with high bone resorption rates. Muscle wasting in space is likely due to hampered muscle protein synthesis. Even though this might theoretically be countered by the synthesis-boosting effects of anabolic steroids, the practical grounds for such recommendation are currently weak. Moreover, they reveal their full potential only when combined with an anabolic exercise stimulus, for example, via strength training. It therefore seems that a combination of exercise and pharmacological countermeasures should be considered for musculoskeletal health on the way to the Moon and Mars and back.
Collapse
Affiliation(s)
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
11
|
Capri M, Conte M, Ciurca E, Pirazzini C, Garagnani P, Santoro A, Longo F, Salvioli S, Lau P, Moeller R, Jordan J, Illig T, Villanueva MM, Gruber M, Bürkle A, Franceschi C, Rittweger J. Long-term human spaceflight and inflammaging: Does it promote aging? Ageing Res Rev 2023; 87:101909. [PMID: 36918115 DOI: 10.1016/j.arr.2023.101909] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Spaceflight and its associated stressors, such as microgravity, radiation exposure, confinement, circadian derailment and disruptive workloads represent an unprecedented type of exposome that is entirely novel from an evolutionary stand point. Within this perspective, we aimed to review the effects of prolonged spaceflight on immune-neuroendocrine systems, brain and brain-gut axis, cardiovascular system and musculoskeletal apparatus, highlighting in particular the similarities with an accelerated aging process. In particular, spaceflight-induced muscle atrophy/sarcopenia and bone loss, vascular and metabolic changes, hyper and hypo reaction of innate and adaptive immune system appear to be modifications shared with the aging process. Most of these modifications are mediated by molecular events that include oxidative and mitochondrial stress, autophagy, DNA damage repair and telomere length alteration, among others, which directly or indirectly converge on the activation of an inflammatory response. According to the inflammaging theory of aging, such an inflammatory response could be a driver of an acceleration of the normal, physiological rate of aging and it is likely that all the systemic modifications in turn lead to an increase of inflammaging in a sort of vicious cycle. The most updated countermeasures to fight these modifications will be also discussed in the light of their possible application not only for astronauts' benefit, but also for older adults on the ground.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.
| | - Erika Ciurca
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy; Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Aurelia Santoro
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Federica Longo
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrick Lau
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maria-Moreno Villanueva
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudio Franceschi
- Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, the Russian Federation
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Musculoskeletal research in human space flight - unmet needs for the success of crewed deep space exploration. NPJ Microgravity 2023; 9:9. [PMID: 36707515 PMCID: PMC9883469 DOI: 10.1038/s41526-023-00258-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Based on the European Space Agency (ESA) Science in Space Environment (SciSpacE) community White Paper "Human Physiology - Musculoskeletal system", this perspective highlights unmet needs and suggests new avenues for future studies in musculoskeletal research to enable crewed exploration missions. The musculoskeletal system is essential for sustaining physical function and energy metabolism, and the maintenance of health during exploration missions, and consequently mission success, will be tightly linked to musculoskeletal function. Data collection from current space missions from pre-, during-, and post-flight periods would provide important information to understand and ultimately offset musculoskeletal alterations during long-term spaceflight. In addition, understanding the kinetics of the different components of the musculoskeletal system in parallel with a detailed description of the molecular mechanisms driving these alterations appears to be the best approach to address potential musculoskeletal problems that future exploratory-mission crew will face. These research efforts should be accompanied by technical advances in molecular and phenotypic monitoring tools to provide in-flight real-time feedback.
Collapse
|
13
|
Sanesi L, Storlino G, Dicarlo M, Oranger A, Zerlotin R, Pignataro P, Suriano C, Guida G, Grano M, Colaianni G, Colucci SC. Time-dependent unloading effects on muscle and bone and involvement of FNDC5/irisin axis. NPJ Microgravity 2023; 9:4. [PMID: 36658231 PMCID: PMC9852594 DOI: 10.1038/s41526-023-00251-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
The identification of biomarkers and countermeasures to prevent the adverse effects on the musculoskeletal system caused by the absence of mechanical loading is the main goal of space biomedical research studies. In this study, we analyzed over 4 weeks of unloading, the modulation in the expression of key proteins in Vastus lateralis, Gastrocnemius and cortical bone in parallel with the modulation of irisin serum levels and its precursor FNDC5 in skeletal muscle of hind limb unloaded (HU) mice. Here we report that Atrogin-1 was up-regulated as early as 1- and 2-week of unloading, whereas Murf-1 at 2- and 3-weeks, along with a marked modulation in the expression of myosin heavy chain isoforms during unloading. Since HU mice showed reduced irisin serum levels at 4-weeks, as well as FNDC5 decrease at 3- and 4-weeks, we treated HU mice with recombinant irisin for 4 weeks, showing that unloading-dependent decline of myosin heavy chain isoforms, MyHCIIα and MyHCIIx, and the anti-apoptotic factor Bcl2, were prevented. In parallel, irisin treatment inhibited the increase of the senescence marker p53, and the pro-apoptotic factor Bax. Overall, these results suggest that the myokine irisin could be a possible therapy to counteract the musculoskeletal impairment caused by unloading.
Collapse
Affiliation(s)
- Lorenzo Sanesi
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy
| | - Giuseppina Storlino
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy
| | - Manuela Dicarlo
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy
| | - Angela Oranger
- grid.7644.10000 0001 0120 3326Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
| | - Roberta Zerlotin
- grid.7644.10000 0001 0120 3326Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
| | - Patrizia Pignataro
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy ,grid.7644.10000 0001 0120 3326Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
| | - Clelia Suriano
- grid.7644.10000 0001 0120 3326Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
| | - Gabriella Guida
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy
| | - Maria Grano
- grid.7644.10000 0001 0120 3326Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
| | - Graziana Colaianni
- grid.7644.10000 0001 0120 3326Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
| | - Silvia Concetta Colucci
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy
| |
Collapse
|
14
|
Changes in interstitial fluid flow, mass transport and the bone cell response in microgravity and normogravity. Bone Res 2022; 10:65. [PMID: 36411278 PMCID: PMC9678891 DOI: 10.1038/s41413-022-00234-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, our scientific interest in spaceflight has grown exponentially and resulted in a thriving area of research, with hundreds of astronauts spending months of their time in space. A recent shift toward pursuing territories farther afield, aiming at near-Earth asteroids, the Moon, and Mars combined with the anticipated availability of commercial flights to space in the near future, warrants continued understanding of the human physiological processes and response mechanisms when in this extreme environment. Acute skeletal loss, more severe than any bone loss seen on Earth, has significant implications for deep space exploration, and it remains elusive as to why there is such a magnitude of difference between bone loss on Earth and loss in microgravity. The removal of gravity eliminates a critical primary mechano-stimulus, and when combined with exposure to both galactic and solar cosmic radiation, healthy human tissue function can be negatively affected. An additional effect found in microgravity, and one with limited insight, involves changes in dynamic fluid flow. Fluids provide the most fundamental way to transport chemical and biochemical elements within our bodies and apply an essential mechano-stimulus to cells. Furthermore, the cell cytoplasm is not a simple liquid, and fluid transport phenomena together with viscoelastic deformation of the cytoskeleton play key roles in cell function. In microgravity, flow behavior changes drastically, and the impact on cells within the porous system of bone and the influence of an expanding level of adiposity are not well understood. This review explores the role of interstitial fluid motion and solute transport in porous bone under two different conditions: normogravity and microgravity.
Collapse
|
15
|
Translation from Microgravity Research to Earth Application. Int J Mol Sci 2022; 23:ijms231910995. [PMID: 36232297 PMCID: PMC9569622 DOI: 10.3390/ijms231910995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
|
16
|
Hart DA, Zernicke RF, Shrive NG. Homo sapiens May Incorporate Daily Acute Cycles of “Conditioning–Deconditioning” to Maintain Musculoskeletal Integrity: Need to Integrate with Biological Clocks and Circadian Rhythm Mediators. Int J Mol Sci 2022; 23:ijms23179949. [PMID: 36077345 PMCID: PMC9456265 DOI: 10.3390/ijms23179949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Human evolution required adaptation to the boundary conditions of Earth, including 1 g gravity. The bipedal mobility of Homo sapiens in that gravitational field causes ground reaction force (GRF) loading of their lower extremities, influencing the integrity of the tissues of those extremities. However, humans usually experience such loading during the day and then a period of relative unloading at night. Many studies have indicated that loading of tissues and cells of the musculoskeletal (MSK) system can inhibit their responses to biological mediators such as cytokines and growth factors. Such findings raise the possibility that humans use such cycles of acute conditioning and deconditioning of the cells and tissues of the MSK system to elaborate critical mediators and responsiveness in parallel with these cycles, particularly involving GRF loading. However, humans also experience circadian rhythms with the levels of a number of mediators influenced by day/night cycles, as well as various levels of biological clocks. Thus, if responsiveness to MSK-generated mediators also occurs during the unloaded part of the daily cycle, that response must be integrated with circadian variations as well. Furthermore, it is also possible that responsiveness to circadian rhythm mediators may be regulated by MSK tissue loading. This review will examine evidence for the above scenario and postulate how interactions could be both regulated and studied, and how extension of the acute cycles biased towards deconditioning could lead to loss of tissue integrity.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
- Correspondence:
| | - Ronald F. Zernicke
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109-5328, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48108-1048, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2099, USA
| | - Nigel G. Shrive
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 4V8, Canada
| |
Collapse
|