1
|
Ye Z, Liu R, Wang H, Zuo A, Jin C, Wang N, Sun H, Feng L, Yang H. Neuroprotective potential for mitigating ischemia-reperfusion-induced damage. Neural Regen Res 2025; 20:2199-2217. [PMID: 39104164 PMCID: PMC11759025 DOI: 10.4103/nrr.nrr-d-23-01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 06/22/2024] [Indexed: 08/07/2024] Open
Abstract
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition; this phenomenon is known as cerebral ischemia-reperfusion injury. Current studies have elucidated the neuroprotective role of the sirtuin protein family (Sirtuins) in modulating cerebral ischemia-reperfusion injury. However, the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration. In this review, the origin and research progress of Sirtuins are summarized, suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury, including inflammation, oxidative stress, blood-brain barrier damage, apoptosis, pyroptosis, and autophagy. The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways, such as nuclear factor-kappa B signaling, oxidative stress mediated by adenosine monophosphate-activated protein kinase, and the forkhead box O. This review also summarizes the potential of endogenous substances, such as RNA and hormones, drugs, dietary supplements, and emerging therapies that regulate Sirtuins expression. This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors. While Sirtuins show promise as a potential target for the treatment of cerebral ischemia-reperfusion injury, most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans, potentially influencing the efficacy of Sirtuins-targeting drug therapies. Overall, this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zi Ye
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Runqing Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hangxing Wang
- Division of Infectious Diseases, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aizhen Zuo
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Cen Jin
- School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Nan Wang
- Division of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huiqi Sun
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, China
| | - Luqian Feng
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
2
|
Chen D, Song T, Liu Y, Wang Y, Qin B, Zhang Q, Hu W, Zhou X, Qi R. Effective Hydrogel Vascular Patch Dual-Loaded with Cycloastragenol Nanostructured Lipid Carriers and Doxycycline for Repairing Extravascular Injury in Abdominal Aortic Aneurysm. Adv Healthc Mater 2025; 14:e2402497. [PMID: 39703126 DOI: 10.1002/adhm.202402497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Endovascular aneurysm repair (EVAR) plays a crucial role in the treatment of abdominal aortic aneurysm (AAA) in the clinic, but the aneurysm remains in the patient's body after surgery, continuing to pose a risk of progression. Cycloastragenol (CAG) is proven to be an effective anti-AAA drug, and its vascular protective effects can be further improved when the hydrophobic CAG is encapsulated into nano-sized formulations to enhance its bioavailability. In this context, this study developed an extravascular patch hydrogel loaded with CAG nanostructured lipid carriers and a hydrophilic drug of doxycycline hydrochloride (DOX). The extravascular patch delivered onto the mouse abdominal aortas can promote local permeation of hydrophilic/hydrophobic drugs at the vessel sites and provide effective vascular protection against AAA injury induced by elastase. This study introduces a novel and promising approach for AAA treatment, which can serve as a supplementary strategy after EVAR surgery.
Collapse
Affiliation(s)
- Du Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- School of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, China
| | - Tiantian Song
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Yi Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Ying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- School of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, China
| | - Boyang Qin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Qingyi Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Weipeng Hu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Xiqiao Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- School of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
3
|
Qin W, Qiao D, Ren M, Ye X, Yu G, Chen G, Xing J, Ma W, Yu M, Yuan X, Ouyang K, Tan W, Zhao D. The active mechanical characteristics of arterial smooth muscle during aneurysm remodeling. Front Bioeng Biotechnol 2025; 13:1560193. [PMID: 40206828 PMCID: PMC11978836 DOI: 10.3389/fbioe.2025.1560193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Abdominal Aortic Aneurysm (AAA) is a common vascular disease characterized by progressive expansion and remodeling of the aortic wall. However, with the gradual expansion of blood vessels, the walls of blood vessels cannot withstand the tension and rupture, jeopardizing people's health. Methods The aim of the experiment was to establish an abdominal aortic aneurysm model in rats by applying porcine pancreatic elastase externally, to measure the diameter and thickness of blood vessels as well as hemodynamics using animal ultrasound, to measure the active contraction of blood vessels, the rate of contraction, and the contraction stress using vascular mechanics equipment, and to observe the pathological changes in the process of AAA growth using vascular pathological staining. Results This study revealed that with the escalation of the inflammatory response, there is a breakdown of elastic fibers and collagen fibers, leading to a decrease in the active contraction force of the arteries. However, it was observed that by alleviating the inflammation, there was a notable enhancement in the active contraction force of the arteries. Discussion To describe the development process of AAA from a biomechanical point of view, to reveal the histopathological mechanism, and thus to identify the theoretical basis for clinical treatment.
Collapse
Affiliation(s)
- Wenqi Qin
- School of Life Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Dan Qiao
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiaoqiang Ye
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Guanghao Yu
- Medical Image College, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Guangxin Chen
- Medical Image College, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Jian Xing
- Medical Image College, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Wei Ma
- Basic Medical School, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Miao Yu
- Peking University Shenzhen Graduate School, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xiaohuan Yuan
- School of Life Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Kunfu Ouyang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenchang Tan
- Peking University Shenzhen Graduate School, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, Guangdong, China
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Dongliang Zhao
- Peking University Shenzhen Graduate School, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Yu Q, Zeng S, Hu R, Li M, Liu Q, Wang Y, Dai M. Dexmedetomidine Alleviates Abdominal Aortic Aneurysm by Activating Autophagy Via AMPK/mTOR Pathway. Cardiovasc Drugs Ther 2025; 39:33-42. [PMID: 37392236 DOI: 10.1007/s10557-023-07483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Abdominal aortic aneurysms (AAA) are a critical global health issue with increasing prevalence. Dexmedetomidine (DEX) is a highly selective α2-adrenoceptor agonist that has previously been shown to play a protective role in AAA. Nevertheless, the mechanisms underlying its protection effect remain not fully understood. METHODS A rat AAA model was established via intra-aortic porcine pancreatic elastase perfusion with or without DEX administration. The abdominal aortic diameters of rats were measured. Hematoxylin-eosin and Elastica van Gieson staining were conducted for histopathological observation. TUNEL and immunofluorescence staining were utilized to detect cell apoptosis and α-SMA/LC3 expression in the abdominal aortas. Protein levels were determined using western blotting. RESULTS DEX administration repressed the dilation of aortas, alleviated pathological damage and cell apoptosis, and suppressed phenotype switching of vascular smooth muscle cells (VSMCs). Moreover, DEX activated autophagy and regulated the AMP-activated protein kinase/mammalian target of the rapamycin (AMPK/mTOR) signaling pathway in AAA rats. Administration of the AMPK inhibitor attenuated the DEX-mediated ameliorative effects on AAA in rats. CONCLUSION DEX ameliorates AAA in rat models by activating autophagy via the AMPK/mTOR pathway.
Collapse
MESH Headings
- Animals
- Dexmedetomidine/pharmacology
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Aneurysm, Abdominal/chemically induced
- TOR Serine-Threonine Kinases/metabolism
- Autophagy/drug effects
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/pathology
- Aorta, Abdominal/enzymology
- Signal Transduction/drug effects
- Disease Models, Animal
- AMP-Activated Protein Kinases/metabolism
- Rats, Sprague-Dawley
- Male
- Apoptosis/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/enzymology
- Adrenergic alpha-2 Receptor Agonists/pharmacology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/enzymology
- Rats
Collapse
Affiliation(s)
- Qi Yu
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, 330052, Jiangxi, China
| | - Simin Zeng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 1519, Dongyue Avenue, Nanchang, 330052, Jiangxi, China
| | - Ruilin Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 1519, Dongyue Avenue, Nanchang, 330052, Jiangxi, China
| | - Muqi Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 1519, Dongyue Avenue, Nanchang, 330052, Jiangxi, China
| | - Qiang Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 1519, Dongyue Avenue, Nanchang, 330052, Jiangxi, China
| | - Yu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 1519, Dongyue Avenue, Nanchang, 330052, Jiangxi, China
| | - Min Dai
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 1519, Dongyue Avenue, Nanchang, 330052, Jiangxi, China.
| |
Collapse
|
5
|
Zihan T, Wenwen T, Yanxia M, Saijilafu. Cycloastragenol promotes dorsal column axon regeneration in mice. Front Cell Neurosci 2025; 18:1424137. [PMID: 39830038 PMCID: PMC11739090 DOI: 10.3389/fncel.2024.1424137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Cycloastragenol (CAG) has a wide range of pharmacological effects, including anti-inflammatory, antiaging, antioxidative, and antitumorigenic properties. In addition, our previous study showed that CAG administration can promote axonal regeneration in peripheral neurons. However, whether CAG can activate axon regeneration central nervous system (CNS) remains unknown. Methods Here, we established a novel mouse model for visualizing spinal cord dorsal column axon regeneration involving the injection of AAV2/9-Cre into the lumbar 4/5 dorsal root ganglion (DRG) of Rosa-tdTomato reporter mice. We then treated mice by intraperitoneal administration of CAG. Results Our results showed that intraperitoneal CAG injections significantly promoted the growth of vitro-cultured DRG axons as well as the growth of dorsal column axons over the injury site in spinal cord injury (SCI) mice. Our results further indicate that CAG administration can promote the recovery of sensory and urinary function in SCI mice. Conclusion Together, our findings highlight the therapeutic potential of CAG in spinal cord injury repair.
Collapse
Affiliation(s)
- Tao Zihan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Teng Wenwen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Ma Yanxia
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Saijilafu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|
6
|
Zhu JX, Zhou C, Huang LZ, Guo JW, Yin NP, Yang F, Zhang YD, Yang Y. Intervention effect of regulating GABA-A receptor activity on the formation of experimental abdominal aortic aneurysm in rats. Sci Rep 2024; 14:31388. [PMID: 39732918 PMCID: PMC11682254 DOI: 10.1038/s41598-024-82913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Abdominal aortic aneurysm is a potentially fatal vascular inflammatory disease characterized by infiltration of various inflammatory cells.The GABA-A receptor is expressed in many inflammatory cells such as macrophages and T cells and has anti-inflammatory and antioxidant effects. Therefore, the GABA-A receptor may become a potential therapeutic target for abdominal aortic aneurysms. The purpose of this study was to investigate the effect of regulating the activity of the GABA-A receptor on the formation of experimental abdominal aortic aneurysm in rats. In this study, the abdominal aortic aneurysm model of rats was established by aorta intracavitary perfusion of elastase combined with aorta extracavitary infiltration of calcium chloride. GABA-A receptor agonist (topiramate) and antagonist (bicuculline) were used to treating the abdominal aortic aneurysm model rats, which were divided into sham operation group, model group, topiramate group, and bicuculline group(n = 10). Histopathology, immunohistochemistry, fluorescence quantitative PCR, Western blotting, ELISA and Gelatine zymogram were used to study. Regulation of GABA-A receptor activity can interfere with the development and severity of abdominal aortic aneurysms in rats. The GABA-A receptor agonist topiramate reduces the infiltration of inflammatory cells, particularly T cells, into the abdominal aortic wall, while also modulating the balance of Th1/Th2 cytokines in peripheral blood, leading to a significant reduction in inflammatory responses. Additionally, topiramate decreases the secretion of matrix metalloproteinases MMP2 and MMP9, thereby inhibiting extracellular matrix degradation and slowing the progression of aneurysms. In contrast, the GABA-A receptor antagonist bicuculline exacerbates inflammation and promotes aneurysm development. At the molecular level, the mechanisms of action of the GABA-A receptor agonist topiramate and the antagonist bicuculline may involve inhibition or activation of the p38 MAPK signaling pathway. Regulation of GABA-A receptor activity can effectively intervene in the occurrence and development of abdominal aortic aneurysms in rats.
Collapse
Affiliation(s)
- Jun-Xing Zhu
- Department of Clinical Medicine, North Sichuang Medical College, Nanchong, 63700, Sichuan Province, China
- Department of Cardiovascular Disease, Affiliated Hospital of North Sichuang Medical College, Nanchong, 63700, Sichuan Province, China
| | - Can Zhou
- Department of Clinical Medicine, North Sichuang Medical College, Nanchong, 63700, Sichuan Province, China
- Department of Cardiovascular Disease, Affiliated Hospital of North Sichuang Medical College, Nanchong, 63700, Sichuan Province, China
| | - Lu-Zhe Huang
- Department of Cardiovascular Disease, Qingtian People's Hospital, Qingtian, 323900, Zhejiang Province, China
| | - Jian-Wei Guo
- Department of Clinical Medicine, North Sichuang Medical College, Nanchong, 63700, Sichuan Province, China
| | - Nian-Pei Yin
- Department of Clinical Medicine, North Sichuang Medical College, Nanchong, 63700, Sichuan Province, China
- Department of Cardiovascular Disease, Affiliated Hospital of North Sichuang Medical College, Nanchong, 63700, Sichuan Province, China
| | - Fang Yang
- Department of Clinical Medicine, North Sichuang Medical College, Nanchong, 63700, Sichuan Province, China
- Department of Cardiovascular Disease, Affiliated Hospital of North Sichuang Medical College, Nanchong, 63700, Sichuan Province, China
| | - Yu-Da Zhang
- Department of Clinical Medicine, North Sichuang Medical College, Nanchong, 63700, Sichuan Province, China
- Department of Cardiovascular Disease, Affiliated Hospital of North Sichuang Medical College, Nanchong, 63700, Sichuan Province, China
| | - Ying Yang
- Department of Clinical Medicine, North Sichuang Medical College, Nanchong, 63700, Sichuan Province, China.
- Department of Cardiovascular Disease, Affiliated Hospital of North Sichuang Medical College, Nanchong, 63700, Sichuan Province, China.
| |
Collapse
|
7
|
Kavaliunaite E, Dhumale P, Jensen CH, Sheikh SP, Lindholt JS, Stubbe J. A Single Injection of ADRCs Does Not Prevent AAA Formation in Rats in a Randomized Blinded Design. Int J Mol Sci 2024; 25:7591. [PMID: 39062833 PMCID: PMC11276694 DOI: 10.3390/ijms25147591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
There is a pressing need for alternative medical treatments for abdominal aortic aneurysms (AAAs). Mesenchymal regenerative cells derived from adipose tissue (ADRCs) have shown potential in modulating the inflammation and immune responses that drive AAA progression. We hypothesized that ADRCs could reduce inflammation and preserve vascular integrity, potentially slowing the progression of AAA. In our study, subcutaneous adipose tissue was harvested from male Sprague Dawley rats, from which ADRCs were isolated. AAA was induced in these rats using intraluminal porcine pancreatic elastase, followed by intravenous administration of either ADRCs (106 cells) or saline (0.1 mL). We monitored the progression of AAA through weekly ultrasound, and the rats were sacrificed on day 28 for histological analysis. Our results showed no significant difference in the inner abdominal aortic diameter at day 28 between the control group (172% ± 73%, n = 17) and the ADRC-treated group (181% ± 75%, n = 15). Histological analyses of AAA cross-sections also revealed no significant difference in the infiltration of neutrophils or macrophages between the two groups. Furthermore, the integrity and content of elastin in the tunica media were similar between groups. These findings indicate that a single injection of ADRCs does not inhibit the development of AAA in rats in a randomized blinded study.
Collapse
Affiliation(s)
- Egle Kavaliunaite
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital (OUH), 5000 Odense C, Denmark;
| | - Pratibha Dhumale
- Department of Clinical Research, University of Southern Denmark (SDU), 5230 Odense M, Denmark; (P.D.)
- Department of Clinical Biochemistry, Odense University Hospital (OUH), 5000 Odense C, Denmark
| | - Charlotte Harken Jensen
- Department of Clinical Research, University of Southern Denmark (SDU), 5230 Odense M, Denmark; (P.D.)
- Department of Clinical Biochemistry, Odense University Hospital (OUH), 5000 Odense C, Denmark
| | - Søren P. Sheikh
- Open Patient Data Explorative Network, Institute of Clinical Research, Odense University Hospital (OUH), 5000 Odense C, Denmark
| | - Jes S. Lindholt
- Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital (OUH), 5000 Odense C, Denmark;
| | - Jane Stubbe
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
8
|
Zhao W, Li B, Hao J, Sun R, He P, Lv H, He M, Shen J, Han Y. Therapeutic potential of natural products and underlying targets for the treatment of aortic aneurysm. Pharmacol Ther 2024; 259:108652. [PMID: 38657777 DOI: 10.1016/j.pharmthera.2024.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Aortic aneurysm is a vascular disease characterized by irreversible vasodilatation that can lead to dissection and rupture of the aortic aneurysm, a life-threatening condition. Thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA) are two main types. The typical treatments for aortic aneurysms are open surgery and endovascular aortic repair, which are only indicated for more severe patients. Most patients with aneurysms have an insidious onset and slow progression, and there are no effective drugs to treat this stage. The inability of current animal models to perfectly simulate all the pathophysiological states of human aneurysms may be the key to this issue. Therefore, elucidating the molecular mechanisms of this disease, finding new therapeutic targets, and developing effective drugs to inhibit the development of aneurysms are the main issues of current research. Natural products have been applied for thousands of years to treat cardiovascular disease (CVD) in China and other Asian countries. In recent years, natural products have combined multi-omics, computational biology, and integrated pharmacology to accurately analyze drug components and targets. Therefore, the multi-component and multi-target complexity of natural products have made them a potentially ideal treatment for multifactorial diseases such as aortic aneurysms. Natural products have regained popularity worldwide. This review provides an overview of the known natural products for the treatment of TAA and AAA and searches for potential cardiovascular-targeted natural products that may treat TAA and AAA based on various cellular molecular mechanisms associated with aneurysm development.
Collapse
Affiliation(s)
- Wenwen Zhao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Bufan Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jinjun Hao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Ruochen Sun
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Peng He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Hongyu Lv
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Mou He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jie Shen
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yantao Han
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Amirsardari Z, Khalili A, Behnoush AH, Agahi S, Amirsardari F, Kohansal E, Sadeghipour P. Bridging the gap: Navigating the impact of dietary supplements on abdominal aortic aneurysm progression- A systematic review. PLoS One 2024; 19:e0305265. [PMID: 38923975 PMCID: PMC11207180 DOI: 10.1371/journal.pone.0305265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Vitamins D, E, A, B, C, and Omega-3 play crucial roles in modulating inflammatory and oxidative stress pathways, both implicated in abdominal aortic aneurysm (AAA) development. Recent research has explored the potential impact of dietary supplements on AAA progression. The systematic review aims to assess interventional studies investigating the effects of various dietary supplements on the development and severity of abdominal aortic aneurysms. METHOD A systematic search using relevant keywords related to abdominal aortic aneurysm and dietary supplements was conducted across four databases (PubMed, Embase, Scopus, and Web of Science). Quality assessment for animal studies employed SYRCLE and the Cochrane Collaboration Risk of Bias Tool for randomized control trials. The study protocol is registered in PROSPERO under the registry code CRD42023455958. RESULTS Supplementation with Omega-3, Vitamins A, C, D, E, and the Vitamin B family exhibited positive effects in AAA progression. These supplements contributed to a reduction in AAA diameter, elastin degradation, inflammatory responses, and reactive oxygen species. Additional supplements such as Zinc, methionine, and phytoestrogen also played roles in mitigating AAA progression. CONCLUSION The findings of this study underscore the potential role of dietary supplements in the progression of AAA. Predominantly based on animal studies, the results indicate that these supplements can limit AAA progression, primarily evidenced by their ability to mitigate inflammatory processes and oxidative stress pathways.
Collapse
Affiliation(s)
- Zahra Amirsardari
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asal Khalili
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sadaf Agahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amirsardari
- School of Nursing and Midwifery, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Sadeghipour
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Hadzikadunic H, Sjælland TB, Lindholt JS, Steffensen LB, Beck HC, Kavaliunaite E, Rasmussen LM, Stubbe J. Nicotine Administration Augments Abdominal Aortic Aneurysm Progression in Rats. Biomedicines 2023; 11:biomedicines11051417. [PMID: 37239088 DOI: 10.3390/biomedicines11051417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammation and elastin degradation are key hallmarks in the pathogenesis of abdominal aortic aneurysms (AAAs). It has been acknowledged that activation of alpha7 nicotinic acetylcholine receptors (α7nAChRs) attenuates inflammation, termed the cholinergic anti-inflammatory pathway (CAP). Thus, we hypothesize that low-dose nicotine impairs the progression of elastase-induced AAAs in rats by exerting anti-inflammatory and anti-oxidative stress properties. Male Sprague-Dawley rats underwent surgical AAA induction with intraluminal elastase infusion. We compared vehicle rats with rats treated with nicotine (1.25 mg/kg/day), and aneurysm progression was monitored by weekly ultrasound images for 28 days. Nicotine treatment significantly promoted AAA progression (p = 0.031). Additionally, gelatin zymography demonstrated that nicotine significantly reduced pro-matrix metalloproteinase (pro-MMP) 2 (p = 0.029) and MMP9 (p = 0.030) activity in aneurysmal tissue. No significant difference was found in the elastin content or the score of elastin degradation between the groups. Neither infiltrating neutrophils nor macrophages, nor aneurysmal messenger RNA (mRNA) levels of pro- or anti-inflammatory cytokines, differed between the vehicle and nicotine groups. Finally, no difference in mRNA levels of markers for anti-oxidative stress or the vascular smooth muscle cells' contractile phenotype was observed. However, proteomics analyses of non-aneurysmal abdominal aortas revealed that nicotine decreased myristoylated alanine-rich C-kinase substrate and proteins, in ontology terms, inflammatory response and reactive oxygen species, and in contradiction to augmented AAAs. In conclusion, nicotine at a dose of 1.25 mg/kg/day augments AAA expansion in this elastase AAA model. These results do not support the use of low-dose nicotine administration for the prevention of AAA progression.
Collapse
Affiliation(s)
- Hana Hadzikadunic
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Tea Bøvling Sjælland
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Jes S Lindholt
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Lasse Bach Steffensen
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Hans Christian Beck
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense, Denmark
| | - Egle Kavaliunaite
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Lars Melholt Rasmussen
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense, Denmark
| | - Jane Stubbe
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
11
|
Kaschina E. Aortic Aneurysm: Finding the Right Target. Biomedicines 2023; 11:biomedicines11051345. [PMID: 37239016 DOI: 10.3390/biomedicines11051345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
This Special Issue of Biomedicines highlights many important scientific findings in aneurysm research [...].
Collapse
Affiliation(s)
- Elena Kaschina
- Cardiovascular-Metabolic-Renal (CMR)-Research Center, Institute of Pharmacology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin,10115 Berlin, Germany
| |
Collapse
|
12
|
Zhu X, Liu B, Ruan Z, Chen M, Li C, Shi H, Huang X, Yu H, Zhou Y, Zhu H, Sun J, Wei Y, Xu W, Dong J. TMT-Based Quantitative Proteomic Analysis Reveals Downregulation of ITGAL and Syk by the Effects of Cycloastragenol in OVA-Induced Asthmatic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6842530. [PMID: 36329800 PMCID: PMC9626231 DOI: 10.1155/2022/6842530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/28/2022] [Accepted: 09/29/2022] [Indexed: 12/08/2023]
Abstract
BACKGROUND Cycloastragenol (CAG) has been reported to alleviate airway inflammation in ovalbumin- (OVA-) induced asthmatic mice. However, its specific mechanisms remain unclear. OBJECTIVE This study is aimed at investigating the effects of CAG on asthma, comparing its efficacy with dexamethasone (DEX), and elucidating the mechanism of CAG's regulation. METHODS The asthma mouse model was induced by OVA. CAG at the optimal dose of 125 mg/kg was given every day from day 0 for 20-day prevention or from day 14 for a 7-day treatment. We observed the preventive and therapeutic effects of CAG in asthmatic mice by evaluating the airway inflammation, AHR, and mucus secretion. Lung proteins were used for TMT-based quantitative proteomic analysis to enunciate its regulatory mechanisms. RESULTS The early administration of 125 mg/kg CAG before asthma happened prevented asthmatic mice from AHR, airway inflammation, and mucus hypersecretion, returning to nearly the original baseline. Alternatively, the administration of CAG during asthma also had the same therapeutic effects as DEX. The proteomic analysis revealed that the therapeutical effects of CAG were associated with 248 differentially expressed proteins and 3 enriched KEGG pathways. We then focused on 3 differentially expressed proteins (ITGAL, Syk, and Vav1) and demonstrated that CAG treatment downregulated ITGAL, Syk, and Vav1 by quantitative real-time PCR, western blot analysis, and immunohistochemical staining. CONCLUSION These findings suggest that CAG exerts preventive and protective effects on asthma by inhibiting ITGAL, Syk, and the downstream target Vav1.
Collapse
Affiliation(s)
- Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhenhui Ruan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengmeng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Congcong Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hanlin Shi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xi Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hang Yu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaolong Zhou
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hehua Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifang Xu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|