1
|
Wang Z, Fang Z, Gui Y, Xi B, Xie Z. Elevated HSPB1 Expression Is Associated with a Poor Prognosis in Glioblastoma Multiforme Patients. J Neurol Surg A Cent Eur Neurosurg 2025; 86:17-29. [PMID: 38959943 DOI: 10.1055/s-0043-1777761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer. This study investigated the clinical predictive value of heat shock protein β1 (HSPB1) in patients with GBM. METHODS A correlation was established between HSPB1 expression and GBM progression using data from The Cancer Genome Atlas (TCGA) dataset, Chinese Glioma Genome Atlas dataset, Gene Expression Omnibus dataset, and Human Protein Atlas database. A survival analysis was conducted and an HSPB1-based nomogram was constructed to evaluate the prognostic value of HSPB1 in patients with GBM. RESULTS Based on TCGA data mining, we discovered that HSPB1 was significantly elevated in patients with GBM and may reflect their response to immunotherapy. In survival analysis, it appeared to have a predictive role in the prognosis of patients with GBM. Five signaling pathways were significantly enriched in the high HSPB1 expression phenotype according to the gene set enrichment analysis. In addition, a significant association was found between HSPB1 expression and immune checkpoints, tumor immune infiltration, tumor immune microenvironment, and immune cell markers in glioma. Overall, our results suggest that HSPB1 may regulate the function of immune cells, serve as a new immunotherapy target, and predict the response to immunotherapy in patients with GBM. CONCLUSION HSPB1 appears to serve as a potential predictor of the clinical prognosis and response to immunotherapy in patients with GBM. It may be possible to identify patients who are likely to benefit from immunotherapy by assessing the expression level of HSPB1.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhaohua Fang
- Department of Neurosurgery, Chongren County People's Hospital, Fuzhou, Jiangxi, China
| | - Yongping Gui
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital, Central South University, Nanchang, Jiangxi, China
| | - Bin Xi
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital, Central South University, Nanchang, Jiangxi, China
| | - Zhiping Xie
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital, Central South University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Nader NE, Frederico SC, Miller T, Huq S, Zhang X, Kohanbash G, Hadjipanayis CG. Barriers to T Cell Functionality in the Glioblastoma Microenvironment. Cancers (Basel) 2024; 16:3273. [PMID: 39409893 PMCID: PMC11476085 DOI: 10.3390/cancers16193273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor depicted by a cold tumor microenvironment, low immunogenicity, and limited effective therapeutic interventions. Its location in the brain, a highly immune-selective organ, acts as a barrier, limiting immune access and promoting GBM dissemination, despite therapeutic interventions. Currently, chemotherapy and radiation combined with surgical resection are the standard of care for GBM treatment. Although immune checkpoint blockade has revolutionized the treatment of solid tumors, its observed success in extracranial tumors has not translated into a significant survival benefit for GBM patients. To develop effective immunotherapies for GBM, it is vital to tailor treatments to overcome the numerous immunosuppressive barriers that inhibit T cell responses to these tumors. In this review, we address the unique physical and immunological barriers that make GBM challenging to treat. Additionally, we explore potential therapeutic mechanisms, studied in central nervous system (CNS) and non-CNS cancers, that may overcome these barriers. Furthermore, we examine current and promising immunotherapy clinical trials and immunotherapeutic interventions for GBM. By highlighting the array of challenges T cell-based therapies face in GBM, we hope this review can guide investigators as they develop future immunotherapies for this highly aggressive malignancy.
Collapse
Affiliation(s)
- Noor E. Nader
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
| | - Stephen C. Frederico
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Tracy Miller
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
| | - Sakibul Huq
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Xiaoran Zhang
- Sloan Kettering Memorial Cancer Center, New York, NY 10065, USA;
| | - Gary Kohanbash
- Sloan Kettering Memorial Cancer Center, New York, NY 10065, USA;
| | | |
Collapse
|
3
|
Zhang H, Zheng W, Chen X, Sa L, Huo Y, Zhang L, Shan L, Wang T. DNAJC1 facilitates glioblastoma progression by promoting extracellular matrix reorganization and macrophage infiltration. J Cancer Res Clin Oncol 2024; 150:315. [PMID: 38909166 PMCID: PMC11193832 DOI: 10.1007/s00432-024-05823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Glioblastoma (GBM) is a high-grade and heterogeneous subtype of glioma that presents a substantial challenge to human health, characterized by a poor prognosis and low survival rates. Despite its known involvement in regulating leukemia and melanoma, the function and mechanism of DNAJC1 in GBM remain poorly understood. METHODS Utilizing data from the TCGA, CGGA, and GEO databases, we investigated the expression pattern of DNAJC1 and its correlation with clinical characteristics in GBM specimens. Loss-of-function experiments were conducted to explore the impact of DNAJC1 on GBM cell lines, with co-culture experiments assessing macrophage infiltration and functional marker expression. RESULTS Our analysis demonstrated frequent overexpression of DNAJC1 in GBM, significantly associated with various clinical characteristics including WHO grade, IDH status, chromosome 1p/19q codeletion, and histological type. Moreover, Kaplan‒Meier and ROC analyses revealed DNAJC1 as a negative prognostic predictor and a promising diagnostic biomarker for GBM patients. Functional studies indicated that silencing DNAJC1 impeded cell proliferation and migration, induced cell cycle arrest, and enhanced apoptosis. Mechanistically, DNAJC1 was implicated in stimulating extracellular matrix reorganization, triggering the epithelial-mesenchymal transition (EMT) process, and initiating immunosuppressive macrophage infiltration. CONCLUSIONS Our findings underscore the pivotal role of DNAJC1 in GBM pathogenesis, suggesting its potential as a diagnostic and therapeutic target for this challenging disease.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wenjing Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xu Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Longqi Sa
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yi Huo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lingling Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lequn Shan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Tao Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Wang H, Medina R, Ye J, Zhang Y, Chakraborty S, Valenzuela A, Uher O, Hadrava Vanova K, Sun M, Sang X, Park DM, Zenka J, Gilbert MR, Pacak K, Zhuang Z. rWTC-MBTA Vaccine Induces Potent Adaptive Immune Responses Against Glioblastomas via Dynamic Activation of Dendritic Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308280. [PMID: 38298111 PMCID: PMC11005728 DOI: 10.1002/advs.202308280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Despite strides in immunotherapy, glioblastoma multiforme (GBM) remains challenging due to low inherent immunogenicity and suppressive tumor microenvironment. Converting "cold" GBMs to "hot" is crucial for immune activation and improved outcomes. This study comprehensively characterized a therapeutic vaccination strategy for preclinical GBM models. The vaccine consists of Mannan-BAM-anchored irradiated whole tumor cells, Toll-like receptor ligands [lipoteichoic acid (LTA), polyinosinic-polycytidylic acid (Poly (I:C)), and resiquimod (R-848)], and anti-CD40 agonistic antibody (rWTC-MBTA). Intracranial GBM models (GL261, SB28 cells) are used to evaluate the vaccine efficacy. A substantial number of vaccinated mice exhibited complete regression of GBM tumors in a T-cell-dependent manner, with no significant toxicity. Long-term tumor-specific immune memory is confirmed upon tumor rechallenge. In the vaccine-draining lymph nodes of the SB28 model, rWTC-MBTA vaccination triggered a major rise in conventional dendritic cell type 1 (cDC1) 12 h post-treatment, followed by an increase in conventional dendritic cell type 2 (cDC2), monocyte-derived dendritic cell (moDC), and plasmacytoid dendritic cell (pDC) on Day 5 and Day 13. Enhanced cytotoxicity of CD4+ and CD8+ T cells in vaccinated mice is verified in co-culture with tumor cells. Analyses of immunosuppressive signals (T-cell exhaustion, myeloid-derived suppressor cells (MDSC), M2 macrophages) in the GBM microenvironment suggest potential combinations with other immunotherapies for enhanced efficacy. In conclusion, the authors findings demonstrate that rWTC-MBTA induces potent and long-term adaptive immune responses against GBM.
Collapse
Affiliation(s)
- Herui Wang
- Neuro‐Oncology BranchNational Cancer InstituteNational Institutes of HealthBethesdaMaryland10022USA
- Present address:
Staff Scientist Neuro‐Oncology BranchNational Cancer Institute Center for Cancer ResearchNational Institutes of HealthBuilding 37 Room 100437 Convent Dr.BethesdaMD20892USA
| | - Rogelio Medina
- Neuro‐Oncology BranchNational Cancer InstituteNational Institutes of HealthBethesdaMaryland10022USA
| | - Juan Ye
- Neuro‐Oncology BranchNational Cancer InstituteNational Institutes of HealthBethesdaMaryland10022USA
| | - Yaping Zhang
- Neuro‐Oncology BranchNational Cancer InstituteNational Institutes of HealthBethesdaMaryland10022USA
| | | | - Alex Valenzuela
- Neuro‐Oncology BranchNational Cancer InstituteNational Institutes of HealthBethesdaMaryland10022USA
| | - Ondrej Uher
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of Health9000 Rockville PikeBethesdaMD20892USA
| | - Katerina Hadrava Vanova
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of Health9000 Rockville PikeBethesdaMD20892USA
| | - Mitchell Sun
- Neuro‐Oncology BranchNational Cancer InstituteNational Institutes of HealthBethesdaMaryland10022USA
| | - Xueyu Sang
- Neuro‐Oncology BranchNational Cancer InstituteNational Institutes of HealthBethesdaMaryland10022USA
| | - Deric M. Park
- John Theurer Cancer CenterHUMCHackensack Meridian School of Medicine92 2nd StHackensackNJ07601USA
| | - Jan Zenka
- Department of Medical BiologyFaculty of ScienceUniversity of South BohemiaČeské Budějovice37005Czech Republic
| | - Mark R. Gilbert
- Neuro‐Oncology BranchNational Cancer InstituteNational Institutes of HealthBethesdaMaryland10022USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of Health9000 Rockville PikeBethesdaMD20892USA
| | - Zhengping Zhuang
- Neuro‐Oncology BranchNational Cancer InstituteNational Institutes of HealthBethesdaMaryland10022USA
- Present address:
Senior Investigator Neuro‐Oncology BranchNational Cancer Institute Center for Cancer ResearchNational Institutes of HealthBuilding 37 Room 100037 Convent DrBethesdaMD20892USA
| |
Collapse
|
5
|
Frosina G. Radiotherapy of high-grade gliomas: dealing with a stalemate. Crit Rev Oncol Hematol 2023; 190:104110. [PMID: 37657520 DOI: 10.1016/j.critrevonc.2023.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
This article discusses the studies on radiotherapy of high-grade gliomas published between January 1, 2022, and June 30, 2022, with special reference to their molecular biology basis. The focus was on advances in radioresistance, radiosensitization and the toxicity of radiotherapy treatments. In the first half of 2022, several important advances have been made in understanding resistance mechanisms in high-grade gliomas. Furthermore, the development of several radiosensitization procedures for these deadly tumors, including studies with small molecule radiosensitizers, new fractionation protocols, and new immunostimulatory agents, has progressed in both the preclinical and clinical settings, reflecting the frantic research effort in the field. However, since 2005 our research efforts fail to produce significant improvements to treatment guidelines for high-grade gliomas. Possible reasons for this stalemate and measures to overcome it are discussed.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
6
|
Miftah H, Naji O, Ssi SA, Ghouzlani A, Lakhdar A, Badou A. NR2F6, a new immune checkpoint that acts as a potential biomarker of immunosuppression and contributes to poor clinical outcome in human glioma. Front Immunol 2023; 14:1139268. [PMID: 37575237 PMCID: PMC10419227 DOI: 10.3389/fimmu.2023.1139268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Intoroduction Nuclear receptor subfamily 2 group F member 6 (NR2F6) is a promising checkpoint target for cancer immunotherapy. However, there has been no investigation of NR2F6 in glioma. Our study systematically explored the clinical characteristics and biological functions of NR2F6 in gliomas. Methods We extracted RNA sequencing (RNA-seq) data of 663 glioma samples from The Cancer Genome Atlas (TCGA) as the training cohort and 325 samples from the Chinese Glioma Genome Atlas (CGGA) as the validation cohort. We also confirmed the NR2F6 gene expression feature in our own cohort of 60 glioma patients. R language and GraphPad Prism softwares were mainly used for statistical analysis and graphical work. Results We found that NR2F6 was significantly related to high tumor aggressiveness and poor outcomes for glioma patients. Functional enrichment analysis demonstrated that NR2F6 was associated with many biological processes that are related to glioma progression, such as angiogenesis, and with multiple immune-related functions. Moreover, NR2F6 was found to be significantly correlated with stromal and immune infiltration in gliomas. Subsequent analysis based on Gliomas single-cell sequencing datasets showed that NR2F6 was expressed in immune cells, tumor cells, and stromal cells. Mechanistically, results suggested that NR2F6 might act as a potential immunosuppression-mediated molecule in the glioma microenvironment through multiple ways, such as the recruitment of immunosuppressive cells, secretion of immunosuppressive cytokines, M2 polarization of macrophages, in addition to combining with other immune checkpoint inhibitors. Conclusion Our findings indicated that intracellular targeting of NR2F6 in both immune cells and tumor cells, as well as stromal cells, may represent a promising immunotherapeutic strategy for glioma. Stromal cells, may represent a promising immunotherapeutic strategy for glioma.
Collapse
Affiliation(s)
- Hayat Miftah
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Oumayma Naji
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Saadia Ait Ssi
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdelhakim Lakhdar
- Department of Neurosurgery, University Hospital Center (UHC) Ibn Rochd, Casablanca, Morocco
- Laboratory of Research on Neurologic, Neurosensorial Diseases and Handicap, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
7
|
Vogelbaum MA, Li G, Heimberger AB, Lang FF, Fueyo J, Gomez-Manzano C, Sanai N. A Window of Opportunity to Overcome Therapeutic Failure in Neuro-Oncology. Am Soc Clin Oncol Educ Book 2022; 42:1-8. [PMID: 35580289 DOI: 10.1200/edbk_349175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Glioblastoma is the most common primary malignant brain neoplasm and it remains one of the most difficult-to-treat human cancers despite decades of discovery and translational and clinical research. Many advances have been made in our understanding of the genetics and epigenetics of gliomas in general; yet, there remains an urgent need to develop novel agents that will improve the survival of patients with this deadly disease. What sets glioblastoma apart from all other cancers is that it develops and spreads within an organ that renders tumor cells inaccessible to most systemically administered agents because of the presence of the blood-brain barrier. Inadequate drug penetration into the central nervous system is often cited as the most common cause of trial failure in neuro-oncology, and even so-called brain-penetrant therapeutics may not reach biologically relevant concentrations in tumor cells. Evaluation of the pharmacokinetics and pharmacodynamics of a novel therapy is a cornerstone of drug development, but few trials for glioma therapeutics have incorporated these basic elements in an organ-specific manner. Window-of-opportunity clinical trial designs can provide early insight into the biological plausibility of a novel therapeutic strategy in the clinical setting. A variety of window-of-opportunity trial designs, which take into account the limited access to treated tissue and the challenges with obtaining pretreatment control tissues, have been used for the initial development of traditional and targeted small-molecule drugs and biologic therapies, including immunotherapies and oncolytic viral therapies. Early-stage development of glioma therapeutics should include a window-of-opportunity component whenever feasible.
Collapse
Affiliation(s)
- Michael A Vogelbaum
- Department of NeuroOncology and NeuroOncology Program, Moffitt Cancer Center, Tampa, FL
| | - Gongbo Li
- Department of Neurosurgery, Northwestern University School of Medicine, Chicago, IL
| | - Amy B Heimberger
- Department of Neurosurgery, Northwestern University School of Medicine, Chicago, IL
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Nader Sanai
- Department of Neurosurgery, Barrow Neurologic Institute, Phoenix, AZ
| |
Collapse
|
8
|
Mensali N, Inderberg EM. Emerging Biomarkers for Immunotherapy in Glioblastoma. Cancers (Basel) 2022; 14:1940. [PMID: 35454848 PMCID: PMC9024739 DOI: 10.3390/cancers14081940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/02/2022] [Accepted: 04/09/2022] [Indexed: 12/02/2022] Open
Abstract
Immunotherapy has shown clinical benefits in several solid malignancies-in particular, melanoma and non-small cell lung cancer. However, in other solid tumours such as glioblastoma (GBM), the response to immunotherapy has been more variable, and except for anti-PD-1 for patients with microsatellite instable (MSI)+ cancers, no immunotherapy is currently approved for GBM patients. GBM is the most common and most aggressive brain cancer with a very poor prognosis and a median overall survival of 15 months. A few prognostic biomarkers have been identified and are used to some extent, but apart from MSI, no biomarkers are used for patient stratification for treatments other than the standard of care, which was established 15 years ago. Around 25% of new treatments investigated in GBM are immunotherapies. Recent studies indicate that the use of integrated and validated immune correlates predicting the response and guiding treatments could improve the efficacy of immunotherapy in GBM. In this review, we will give an overview of the current status of immunotherapy and biomarkers in use in GBM with the main challenges of treatment in this disease. We will also discuss emerging biomarkers that could be used in future immunotherapy strategies for patient stratification and potentially improved treatment efficacy.
Collapse
Affiliation(s)
| | - Else Marit Inderberg
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, 0379 Oslo, Norway;
| |
Collapse
|