1
|
Yan L, Niu X, Liang K, Guan F, Yu X, Ye Z, Huang M, Liang H, Zhong X, Zeng J. Assessing the Role of Polyamine Metabolites in Blood and the DNA Methylation of Mycobacterium Tuberculosis in Patients with Multidrug-Resistant Tuberculosis. Int J Med Sci 2025; 22:1762-1772. [PMID: 40225858 PMCID: PMC11983307 DOI: 10.7150/ijms.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/23/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Tuberculosis (TB) is the second largest infectious disease killer in China, and the increasing prevalence of drug-resistant TB patients complicates treatment efforts and raises associated costs. Research on the mechanisms and characteristics of drug-resistant TB contributes to the discovery of new drug targets and the development of new anti-tuberculosis drugs. Methods: In this study, high-performance liquid chromatography (HPLC) was used to detect the content of polyamine metabolites, while western blotting, qPCR and ELISA were used to detect the expression of polyamine metabolism-related enzymes. The Oxford Nanopore Technologies (ONT) sequencing was applied to profile DNA methylation in multidrug-resistant Mycobacterium tuberculosis (Mtb). Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on the screened differentially hypermethylated genes. Furthermore, STRING and Cytoscape software were used to construct a protein-protein interaction (PPI) network to identify the key genes. Results: The findings indicated the spermidine (SPD) and polyamine metabolism-related enzymes were elevated in the peripheral blood of TB patients. In addition, the production of polyamines and polyamine metabolism-related enzymes was increased in the peripheral blood of multidrug-resistant tuberculosis (MDR-TB) patients. GO and KEGG analyses showed that the differentially hypermethylated genes were mainly enriched in arginine metabolism. The PPI network analysis identified the top five key genes with the highest degrees: moaX, vapC49, vapB49, highA3 and nuoC. Conclusions: Polyamine metabolites were increased in the peripheral blood of MDR-TB patients. The differentially hypermethylated genes in multidrug-resistant Mtb are involved in the arginine biosynthetic process, the differentially methylated genes may play an important biological role in the multidrug resistance of Mtb.
Collapse
Affiliation(s)
- Li Yan
- Dongguan Key Laboratory of Tuberculosis Prevention and Control, Dongguan Sixth People's Hospital, Dongguan 523008, Guangdong, China
| | - Xinxin Niu
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Kuidi Liang
- Dongguan Key Laboratory of Tuberculosis Prevention and Control, Dongguan Sixth People's Hospital, Dongguan 523008, Guangdong, China
| | - Feifeng Guan
- Dongguan Key Laboratory of Tuberculosis Prevention and Control, Dongguan Sixth People's Hospital, Dongguan 523008, Guangdong, China
| | - Xiaolin Yu
- Dongguan Key Laboratory of Tuberculosis Prevention and Control, Dongguan Sixth People's Hospital, Dongguan 523008, Guangdong, China
| | - Ziyu Ye
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, Guangdong, China
| | - Mingyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Hancheng Liang
- Dongguan Key Laboratory of Tuberculosis Prevention and Control, Dongguan Sixth People's Hospital, Dongguan 523008, Guangdong, China
| | - Xinguang Zhong
- Dongguan Key Laboratory of Tuberculosis Prevention and Control, Dongguan Sixth People's Hospital, Dongguan 523008, Guangdong, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, Guangdong, China
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, Guangdong, China
| |
Collapse
|
2
|
Ergun P, Samuels TL, Mathison AJ, Plehhova K, Coyle C, Horvath L, Johnston N. Global Transcriptomic Analysis of Topical Sodium Alginate Protection against Peptic Damage in an In Vitro Model of Treatment-Resistant Gastroesophageal Reflux Disease. Int J Mol Sci 2024; 25:10714. [PMID: 39409043 PMCID: PMC11605242 DOI: 10.3390/ijms251910714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
Breakthrough symptoms are thought to occur in roughly half of all gastroesophageal reflux disease (GERD) patients despite maximal acid suppression (proton pump inhibitor, PPI) therapy. Topical alginates have recently been shown to enhance mucosal defense against acid-pepsin insult during GERD. We aimed to examine potential alginate protection of transcriptomic changes in a cell culture model of PPI-recalcitrant GERD. Immortalized normal-derived human esophageal epithelial cells underwent pretreatment with commercial alginate-based anti-reflux medications (Gaviscon Advance or Gaviscon Double Action), a matched-viscosity placebo control, or pH 7.4 buffer (sham) alone for 1 min, followed by exposure to pH 6.0 + pepsin or buffer alone for 3 min. RNA sequencing was conducted, and Ingenuity Pathway Analysis was performed with a false discovery rate of ≤0.01 and absolute fold-change of ≥1.3. Pepsin-acid exposure disrupted gene expressions associated with epithelial barrier function, chromatin structure, carcinogenesis, and inflammation. Alginate formulations demonstrated protection by mitigating these changes and promoting extracellular matrix repair, downregulating proto-oncogenes, and enhancing tumor suppressor expression. These data suggest molecular mechanisms by which alginates provide topical protection against injury during weakly acidic reflux and support a potential role for alginates in the prevention of GERD-related carcinogenesis.
Collapse
Affiliation(s)
- Pelin Ergun
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (P.E.); (T.L.S.)
| | - Tina L. Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (P.E.); (T.L.S.)
| | - Angela J. Mathison
- Mellowes Center for Genomic Science and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Kate Plehhova
- Reckitt Benckiser Healthcare UK Ltd., Slough SL1 3UH, UK; (K.P.); (C.C.); (L.H.)
| | - Cathal Coyle
- Reckitt Benckiser Healthcare UK Ltd., Slough SL1 3UH, UK; (K.P.); (C.C.); (L.H.)
| | - Lizzie Horvath
- Reckitt Benckiser Healthcare UK Ltd., Slough SL1 3UH, UK; (K.P.); (C.C.); (L.H.)
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (P.E.); (T.L.S.)
| |
Collapse
|
3
|
Kim JE, Kim TR, Song HJ, Roh YJ, Seol A, Park KH, Park ES, Min KS, Kim KB, Kwack SJ, Jung YS, Hwang DY. Identification of acrolein as a novel diagnostic odor biomarker for 1,2,3-trichloropropane-induced hepatotoxicity in Sprague Dawley rats. Toxicol Res 2024; 40:639-651. [PMID: 39345751 PMCID: PMC11436700 DOI: 10.1007/s43188-024-00253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 10/01/2024] Open
Abstract
Body odor is considered a diagnostic indicator of various infectious and chronic diseases. But, few studies have examined the odor markers for various toxic effects in the mammalian system. This study attempted to identify the novel diagnostic odor biomarkers for chemical-induced hepatotoxicity in animals. The changes in the concentration of odors were analyzed in the urine of Sprague Dawley (SD) rats treated with two dosages (100 or 200 mg/kg) of 1,2,3-trichloropropane (TCP) using gas chromatography-mass spectrometry (GC-MS). The TCP treatment induced significant toxicity, including a decrease in body weight, an increase in serum biochemical factors, and histopathological changes in the liver of SD rats. During this hepatotoxicity, the concentrations of six odors (ethyl alcohol, acrolein (2-propenal), methanesulfonyl chloride, methyl ethyl ketone, cyclotrisiloxane, and 2-heptanone) in urine changed significantly after the TCP treatment. Among them, acrolein, an acrid and pungent compound, showed the highest rate of increase in the TCP-treated group compared to the Vehicle-treated group. In addition, this increase in acrolein was accompanied by enhanced spermine oxidase (SMOX) expression, an acrolein metabolic enzyme, and the increased level of IL-6 transcription as a regulator factor that induces SMOX production. The correlation between acrolein and other parameters was conformed using correlagram analyses. These results provide scientific evidence that acrolein have potential as a novel diagnostic odor biomarker for TCP-induced hepatotoxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00253-0.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Tae Ryeol Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Ki Ho Park
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Eun Seo Park
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Kyeong Seon Min
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan, 31116 Republic of Korea
| | - Seung Jun Kwack
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon, 51140 Republic of Korea
| | - Young Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241 Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| |
Collapse
|
4
|
Tao Y, Cheng C. Targeting SMOX for the treatment of hepatocellular carcinoma? Clin Res Hepatol Gastroenterol 2024; 48:102429. [PMID: 39059608 DOI: 10.1016/j.clinre.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Dysregulation of the polyamine metabolism is common in different cancer types. SMOX is upregulated in hepatocellular carcinoma (HCC) but the relationship between SMOX and liver inflammation and fibrosis, remains unclear. In this issue of Clin Res Hepatol Gastroenterol, Hu and colleagues find targeting SMOX can alleviate liver cancer progression.
Collapse
Affiliation(s)
- Yulei Tao
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chunming Cheng
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
5
|
Feng L, Chen Y, Mei X, Wang L, Zhao W, Yao J. Prognostic Signature in Osteosarcoma Based on Amino Acid Metabolism-Associated Genes. Cancer Biother Radiopharm 2024; 39:517-531. [PMID: 38512709 DOI: 10.1089/cbr.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Background: Osteosarcoma (OS) is undeniably a formidable bone malignancy characterized by a scarcity of effective treatment options. Reprogramming of amino acid (AA) metabolism has been associated with OS development. The present study was designed to identify metabolism-associated genes (MAGs) that are differentially expressed in OS and to construct a MAG-based prognostic risk signature for this disease. Methods: Expression profiles and clinicopathological data were downloaded from Gene Expression Omnibus (GEO) and UCSC Xena databases. A set of AA MAGs was obtained from the MSigDB database. Differentially expressed genes (DEGs) in GEO dataset were identified using "limma." Prognostic MAGs from UCSC Xena database were determined through univariate Cox regression and used in the prognostic signature development. This signature was validated using another dataset from GEO database. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, single sample gene set enrichment analysis, and GDSC2 analyses were performed to explore the biological functions of the MAGs. A MAG-based nomogram was established to predict 1-, 3-, and 5-year survival. Real-time quantitative polymerase chain reaction, Western blot, and immunohistochemical staining confirmed the expression of MAGs in primary OS and paired adjacent normal tissues. Results: A total of 790 DEGs and 62 prognostic MAGs were identified. A MAG-based signature was constructed based on four MAGs: PIPOX, PSMC2, SMOX, and PSAT1. The prognostic value of this signature was successfully validated, with areas under the receiver operating characteristic curves for 1-, 3-, and 5-year survival of 0.714, 0.719, and 0.715, respectively. This MAG-based signature was correlated with the infiltration of CD56dim natural killer cells and resistance to several antiangiogenic agents. The nomogram was accurate in predictions, with a C-index of 0.77. The expression of MAGs verified by experiment was consistent with the trends observed in GEO database. Conclusion: Four AA MAGs were prognostic of survival in OS patients. This MAG-based signature has the potential to offer valuable insights into the development of treatments for OS.
Collapse
Affiliation(s)
- Liwen Feng
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangping Mei
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenjing Zhao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiannan Yao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Okinaka Y, Kageyama S, Goto T, Sugimoto M, Tomita A, Aizawa Y, Kobayashi K, Wada A, Kawauchi A, Kataoka Y. Metabolomic profiling of cancer-related fatigue involved in cachexia and chemotherapy. Sci Rep 2024; 14:8329. [PMID: 38594321 PMCID: PMC11004174 DOI: 10.1038/s41598-024-57747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Patients with advanced cancer are frequently burdened with a severe sensation of fatigue called cancer-related fatigue (CRF). CRF is induced at various stages and treatments, such as cachexia and chemotherapy, and reduces the overall survival of patients. Objective and quantitative assessment of CRF could contribute to the diagnosis and prediction of treatment efficacy. However, such studies have not been intensively performed, particularly regarding metabolic profiles. Here, we conducted plasma metabolomics of 15 patients with urological cancer. The patients with and without fatigue, including those with cachexia or chemotherapy-induced fatigue, were compared. Significantly lower concentrations of valine and tryptophan were observed in fatigued patients than in non-fatigued patients. In addition, significantly higher concentrations of polyamine pathway metabolites were observed in patients with fatigue and cachexia than in those without cachexia. Patients with exacerbated fatigue due to chemotherapy showed significantly decreased cysteine and methionine metabolism before chemotherapy compared with those without fatigue exacerbation. These findings suggest that plasma metabolic profiles could help improve the diagnosis and monitoring of CRF.
Collapse
Affiliation(s)
- Yuki Okinaka
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
- RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan
| | - Susumu Kageyama
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Toshiyuki Goto
- RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, 650-0047, Japan
| | - Masahiro Sugimoto
- Institute of Medical Science, Tokyo Medical University, Tokyo, 160-8402, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052, Japan
| | - Atsumi Tomita
- Institute of Medical Science, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Yumi Aizawa
- Institute of Medical Science, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Kenichi Kobayashi
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Akinori Wada
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Yosky Kataoka
- RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan.
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, 650-0047, Japan.
| |
Collapse
|
7
|
Monti M, Ferrari G, Grosso V, Missale F, Bugatti M, Cancila V, Zini S, Segala A, La Via L, Consoli F, Orlandi M, Valerio A, Tripodo C, Rossato M, Vermi W. Impaired activation of plasmacytoid dendritic cells via toll-like receptor 7/9 and STING is mediated by melanoma-derived immunosuppressive cytokines and metabolic drift. Front Immunol 2024; 14:1227648. [PMID: 38239354 PMCID: PMC10795195 DOI: 10.3389/fimmu.2023.1227648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Plasmacytoid dendritic cells (pDCs) infiltrate a large set of human cancers. Interferon alpha (IFN-α) produced by pDCs induces growth arrest and apoptosis in tumor cells and modulates innate and adaptive immune cells involved in anti-cancer immunity. Moreover, effector molecules exert tumor cell killing. However, the activation state and clinical relevance of pDCs infiltration in cancer is still largely controversial. In Primary Cutaneous Melanoma (PCM), pDCs density decreases over disease progression and collapses in metastatic melanoma (MM). Moreover, the residual circulating pDC compartment is defective in IFN-α production. Methods The activation of tumor-associated pDCs was evaluated by in silico and microscopic analysis. The expression of human myxovirus resistant protein 1 (MxA), as surrogate of IFN-α production, and proximity ligation assay (PLA) to test dsDNA-cGAS activation were performed on human melanoma biopsies. Moreover, IFN-α and CXCL10 production by in vitro stimulated (i.e. with R848, CpG-A, ADU-S100) pDCs exposed to melanoma cell lines supernatants (SN-mel) was tested by intracellular flow cytometry and ELISA. We also performed a bulk RNA-sequencing on SN-mel-exposed pDCs, resting or stimulated with R848. Glycolytic rate assay was performed on SN-mel-exposed pDCs using the Seahorse XFe24 Extracellular Flux Analyzer. Results Based on a set of microscopic, functional and in silico analyses, we demonstrated that the melanoma milieu directly impairs IFN-α and CXCL10 production by pDCs via TLR-7/9 and cGAS-STING signaling pathways. Melanoma-derived immunosuppressive cytokines and a metabolic drift represent relevant mechanisms enforcing pDC-mediated melanoma escape. Discussion These findings propose a new window of intervention for novel immunotherapy approaches to amplify the antitumor innate immune response in cutaneous melanoma (CM).
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Grosso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Francesco Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Head & Neck Oncology & Surgery Otorhinolaryngology, Nederlands Kanker Instituut, Amsterdam, Netherlands
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Stefania Zini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Agnese Segala
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Consoli
- Oncology Unit, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Matteo Orlandi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
8
|
Kong HJ, Kang DH, Ahn TS, Kim KS, Kim TW, Lee SH, Lee DW, Ryu JS, Beak MJ. The Role of CPNE7 (Copine-7) in Colorectal Cancer Prognosis and Metastasis. Int J Mol Sci 2023; 24:16704. [PMID: 38069026 PMCID: PMC10706690 DOI: 10.3390/ijms242316704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and deadly cancers in the world. However, no effective treatment for the disease has yet been found. For this reason, several studies are being carried out on the treatment of CRC. Currently, there is limited understanding of the role of CPNE7 (copine-7) in CRC progression and metastasis. The results of this study show that CPNE7 exerts an oncogenic effect in CRC. First, CPNE7 was shown to be significantly up-regulated in CRC patient tissues and CRC cell lines compared to normal tissues according to IHC staining, qRT-PCR, and western blotting. Next, this study used both systems of siRNA and shRNA to suppress CPNE7 gene expression to check the CPNE7 mechanism in CRC. The suppressed CPNE7 significantly inhibited the growth of CRC cells in in vitro experiments, including migration, invasion, and semisolid agar colony-forming assay. Moreover, the modified expression of CPNE7 led to a decrease in the levels of genes associated with epithelial-mesenchymal transition (EMT). The epithelial genes E-cadherin (CDH1) and Collagen A1 were upregulated, and the levels of mesenchymal genes such as N-cadherin (CDH2), ZEB1, ZEB2, and SNAIL (SNAL1) were downregulated after CPNE7 inhibition. This study suggests that CPNE7 may serve as a potential diagnostic biomarker for CRC patients.
Collapse
Affiliation(s)
- Hye-Jeong Kong
- Department of Medical Life Science, Soonchunhyang University, Asan 31538, Republic of Korea; (H.-J.K.); (K.-S.K.); (T.-W.K.); (D.-W.L.); (J.-S.R.)
| | - Dong-Hyun Kang
- Department of Surgery, Soonchunhyang University College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (D.-H.K.); (T.-S.A.); (S.-H.L.)
| | - Tae-Sung Ahn
- Department of Surgery, Soonchunhyang University College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (D.-H.K.); (T.-S.A.); (S.-H.L.)
| | - Kwang-Seock Kim
- Department of Medical Life Science, Soonchunhyang University, Asan 31538, Republic of Korea; (H.-J.K.); (K.-S.K.); (T.-W.K.); (D.-W.L.); (J.-S.R.)
| | - Tae-Wan Kim
- Department of Medical Life Science, Soonchunhyang University, Asan 31538, Republic of Korea; (H.-J.K.); (K.-S.K.); (T.-W.K.); (D.-W.L.); (J.-S.R.)
| | - Soo-Hyeon Lee
- Department of Surgery, Soonchunhyang University College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (D.-H.K.); (T.-S.A.); (S.-H.L.)
| | - Dong-Woo Lee
- Department of Medical Life Science, Soonchunhyang University, Asan 31538, Republic of Korea; (H.-J.K.); (K.-S.K.); (T.-W.K.); (D.-W.L.); (J.-S.R.)
| | - Jae-Sung Ryu
- Department of Medical Life Science, Soonchunhyang University, Asan 31538, Republic of Korea; (H.-J.K.); (K.-S.K.); (T.-W.K.); (D.-W.L.); (J.-S.R.)
| | - Moo-Jun Beak
- Department of Surgery, Soonchunhyang University College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (D.-H.K.); (T.-S.A.); (S.-H.L.)
| |
Collapse
|
9
|
Nordio G, Piazzola F, Cozza G, Rossetto M, Cervelli M, Minarini A, Basagni F, Tassinari E, Dalla Via L, Milelli A, Di Paolo ML. From Monoamine Oxidase Inhibition to Antiproliferative Activity: New Biological Perspectives for Polyamine Analogs. Molecules 2023; 28:6329. [PMID: 37687158 PMCID: PMC10490032 DOI: 10.3390/molecules28176329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Monoamine oxidases (MAOs) are well-known pharmacological targets in neurological and neurodegenerative diseases. However, recent studies have revealed a new role for MAOs in certain types of cancer such as glioblastoma and prostate cancer, in which they have been found overexpressed. This finding is opening new frontiers for MAO inhibitors as potential antiproliferative agents. In light of our previous studies demonstrating how a polyamine scaffold can act as MAO inhibitor, our aim was to search for novel analogs with greater inhibitory potency for human MAOs and possibly with antiproliferative activity. A small in-house library of polyamine analogs (2-7) was selected to investigate the effect of constrained linkers between the inner amine functions of a polyamine backbone on the inhibitory potency. Compounds 4 and 5, characterized by a dianiline (4) or dianilide (5) moiety, emerged as the most potent, reversible, and mainly competitive MAO inhibitors (Ki < 1 μM). Additionally, they exhibited a high antiproliferative activity in the LN-229 human glioblastoma cell line (GI50 < 1 μM). The scaffold of compound 5 could represent a potential starting point for future development of anticancer agents endowed with MAO inhibitory activity.
Collapse
Affiliation(s)
- Giulia Nordio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (G.N.); (F.P.); (L.D.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Francesco Piazzola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (G.N.); (F.P.); (L.D.V.)
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (G.C.); (M.R.)
| | - Monica Rossetto
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (G.C.); (M.R.)
| | - Manuela Cervelli
- Department of Science, University of Rome “Roma Tre”, 00146 Rome, Italy;
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (A.M.); (F.B.)
| | - Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (A.M.); (F.B.)
| | - Elisa Tassinari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy;
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (G.N.); (F.P.); (L.D.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy;
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (G.C.); (M.R.)
| |
Collapse
|
10
|
Ragno R, Minarini A, Proia E, Lorenzo A, Milelli A, Tumiatti V, Fiore M, Fino P, Rutigliano L, Fioravanti R, Tahara T, Pacella E, Greco A, Canettieri G, Di Paolo ML, Agostinelli E. Bovine Serum Amine Oxidase and Polyamine Analogues: Chemical Synthesis and Biological Evaluation Integrated with Molecular Docking and 3-D QSAR Studies. J Chem Inf Model 2022; 62:3910-3927. [PMID: 35948439 DOI: 10.1021/acs.jcim.2c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural polyamines (PAs) are key players in cellular homeostasis by regulating cell growth and proliferation. Several observations highlight that PAs are also implicated in pathways regulating cell death. Indeed, the PA accumulation cytotoxic effect, maximized with the use of bovine serum amine oxidase (BSAO) enzyme, represents a valuable strategy against tumor progression. In the present study, along with the design, synthesis, and biological evaluation of a series of new spermine (Spm) analogues (1-23), a mixed structure-based (SB) and ligand-based (LB) protocol was applied. Binding modes of BSAO-PA modeled complexes led to clarify electrostatic and steric features likely affecting the BSAO-PA biochemical kinetics. LB and SB three-dimensional quantitative structure-activity relationship (Py-CoMFA and Py-ComBinE) models were developed by means of the 3d-qsar.com portal, and their analysis represents a strong basis for future design and synthesis of PA BSAO substrates for potential application in oxidative stress-induced chemotherapy.
Collapse
Affiliation(s)
- Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Eleonora Proia
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Antonini Lorenzo
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, Rimini 47921, Italy
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, Rimini 47921, Italy
| | - Marco Fiore
- Department Institute of Biochemistry and Cell Biology, IBBC-CNR, Via E. Ramarini, 32, Monterotondo Scalo Rome 00015, Italy
| | - Pasquale Fino
- UOC of Dermatology, Policlinico Umberto I Hospital, Sapienza Medical School of Rome, Viale del Policlinico 155, Rome I-00161, Italy
| | - Lavinia Rutigliano
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Tomoaki Tahara
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Elena Pacella
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University Padua, Via G. Colombo 3, Padova 35131, Italy
| | - Enzo Agostinelli
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy.,International Polyamines Foundation 'ETS-ONLUS', Via del Forte Tiburtino 98, Rome I-00159, Italy
| |
Collapse
|