1
|
Yang H, Xuan L, Wang S, Luo H, Duan X, Guo J, Cui S, Xin J, Hao J, Li X, Chen J, Sun F, Hu X, Li S, Zhang Y, Jiao L, Yang B, Sun L. LncRNA CCRR maintains Ca 2+ homeostasis against myocardial infarction through the FTO-SERCA2a pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1601-1619. [PMID: 38761356 DOI: 10.1007/s11427-023-2527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/11/2024] [Indexed: 05/20/2024]
Abstract
Cardiac conduction regulatory RNA (CCRR) has been documented as an antiarrhythmic lncRNA in our earlier investigation. This study aimed to evaluate the effects of CCRR on SERCA2a and the associated Ca2+ homeostasis in myocardial infarction (MI). Overexpression of CCRR via AAV9-mediated delivery not only partially reversed ischemia-induced contractile dysfunction but also alleviated abnormal Ca2+ homeostasis and reduced the heightened methylation level of SERCA2a following MI. These effects were also observed in CCRR over-expressing transgenic mice. A conserved sequence domain of CCRR mimicked the protective function observed with the full length. Furthermore, silencing CCRR in healthy mice led to intracellular Ca2+ overloading of cardiomyocytes. CCRR increased SERCA2a protein stability by upregulating FTO expression. The direct interaction between CCRR and FTO protein was characterized by RNA-binding protein immunoprecipitation (RIP) analysis and RNA pulldown experiments. Activation of NFATc3 was identified as an upstream mechanism responsible for CCRR downregulation in MI. This study demonstrates that CCRR is a protective lncRNA that acts by maintaining the function of FTO, thereby reducing the m6A RNA methylation level of SERCA2a, ultimately preserving calcium homeostasis for myocardial contractile function in MI. Therefore, CCRR may be considered a promising therapeutic strategy with a beneficial role in cardiac pathology.
Collapse
Affiliation(s)
- Hua Yang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lina Xuan
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shengjie Wang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Huishan Luo
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaomeng Duan
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jianjun Guo
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shijia Cui
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jieru Xin
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Junwei Hao
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiufang Li
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jun Chen
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Feihan Sun
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaolin Hu
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Siyun Li
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Zhang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lei Jiao
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Baofeng Yang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Lihua Sun
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Burattini M, Lo Muzio FP, Hu M, Bonalumi F, Rossi S, Pagiatakis C, Salvarani N, Fassina L, Luciani GB, Miragoli M. Unlocking cardiac motion: assessing software and machine learning for single-cell and cardioid kinematic insights. Sci Rep 2024; 14:1782. [PMID: 38245558 PMCID: PMC10799933 DOI: 10.1038/s41598-024-52081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The heart coordinates its functional parameters for optimal beat-to-beat mechanical activity. Reliable detection and quantification of these parameters still represent a hot topic in cardiovascular research. Nowadays, computer vision allows the development of open-source algorithms to measure cellular kinematics. However, the analysis software can vary based on analyzed specimens. In this study, we compared different software performances in in-silico model, in-vitro mouse adult ventricular cardiomyocytes and cardioids. We acquired in-vitro high-resolution videos during suprathreshold stimulation at 0.5-1-2 Hz, adapting the protocol for the cardioids. Moreover, we exposed the samples to inotropic and depolarizing substances. We analyzed in-silico and in-vitro videos by (i) MUSCLEMOTION, the gold standard among open-source software; (ii) CONTRACTIONWAVE, a recently developed tracking software; and (iii) ViKiE, an in-house customized video kinematic evaluation software. We enriched the study with three machine-learning algorithms to test the robustness of the motion-tracking approaches. Our results revealed that all software produced comparable estimations of cardiac mechanical parameters. For instance, in cardioids, beat duration measurements at 0.5 Hz were 1053.58 ms (MUSCLEMOTION), 1043.59 ms (CONTRACTIONWAVE), and 937.11 ms (ViKiE). ViKiE exhibited higher sensitivity in exposed samples due to its localized kinematic analysis, while MUSCLEMOTION and CONTRACTIONWAVE offered temporal correlation, combining global assessment with time-efficient analysis. Finally, machine learning reveals greater accuracy when trained with MUSCLEMOTION dataset in comparison with the other software (accuracy > 83%). In conclusion, our findings provide valuable insights for the accurate selection and integration of software tools into the kinematic analysis pipeline, tailored to the experimental protocol.
Collapse
Affiliation(s)
- Margherita Burattini
- Department of Surgery, Dentistry and Maternity, University of Verona, Verona, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Paolo Lo Muzio
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Deutsches Herzzentrum Der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Mirko Hu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Flavia Bonalumi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Christina Pagiatakis
- Humanitas Research Hospital, IRCCS, Rozzano (Milan), Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Nicolò Salvarani
- Humanitas Research Hospital, IRCCS, Rozzano (Milan), Italy
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | | | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Humanitas Research Hospital, IRCCS, Rozzano (Milan), Italy.
| |
Collapse
|
3
|
Strohm EM, Callaghan NI, Ding Y, Latifi N, Rafatian N, Funakoshi S, Fernandes I, Reitz CJ, Di Paola M, Gramolini AO, Radisic M, Keller G, Kolios MC, Simmons CA. Noninvasive Quantification of Contractile Dynamics in Cardiac Cells, Spheroids, and Organs-on-a-Chip Using High-Frequency Ultrasound. ACS NANO 2024; 18:314-327. [PMID: 38147684 DOI: 10.1021/acsnano.3c06325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell-based models that mimic in vivo heart physiology are poised to make significant advances in cardiac disease modeling and drug discovery. In these systems, cardiomyocyte (CM) contractility is an important functional metric, but current measurement methods are inaccurate and low-throughput or require complex setups. To address this need, we developed a standalone noninvasive, label-free ultrasound technique operating at 40-200 MHz to measure the contractile kinetics of cardiac models, ranging from single adult CMs to 3D microtissue constructs in standard cell culture formats. The high temporal resolution of 1000 fps resolved the beat profile of single mouse CMs paced at up to 9 Hz, revealing limitations of lower speed optical based measurements to resolve beat kinetics or characterize aberrant beats. Coupling of ultrasound with traction force microscopy enabled the measurement of the CM longitudinal modulus and facile estimation of adult mouse CM contractile forces of 2.34 ± 1.40 μN, comparable to more complex measurement techniques. Similarly, the beat rate, rhythm, and drug responses of CM spheroid and microtissue models were measured, including in configurations without optical access. In conclusion, ultrasound can be used for the rapid characterization of CM contractile function in a wide range of commonly studied configurations ranging from single cells to 3D tissue constructs using standard well plates and custom microdevices, with applications in cardiac drug discovery and cardiotoxicity evaluation.
Collapse
Affiliation(s)
- Eric M Strohm
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
| | - Neal I Callaghan
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
| | - Yu Ding
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
| | - Neda Latifi
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
| | - Naimeh Rafatian
- Toronto General Hospital Research Institute, Toronto, M5G 2C4, Canada
| | - Shunsuke Funakoshi
- McEwen Stem Cell Institute, University Health Network, Toronto, M5G 1L7, Canada
| | - Ian Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, M5G 1L7, Canada
| | - Cristine J Reitz
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Michelle Di Paola
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Anthony O Gramolini
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
- Toronto General Hospital Research Institute, Toronto, M5G 2C4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, M5S 3E5, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, M5B 2K3, Canada
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
| |
Collapse
|
4
|
Su L, Liu L, Ji M, Hu X, Liang M, Lu Z, Wang Z, Guan Y, Xiao J, Zhuang M, Zhu S, Yang L, Pu H. Analysis of heroin effects on calcium channels in rat cardiomyocytes based on transcriptomics and metabolomics. Open Med (Wars) 2023; 18:20230765. [PMID: 37554148 PMCID: PMC10404893 DOI: 10.1515/med-2023-0765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 06/11/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
Heroin can cause damage to many human organs, possibly leading to different types of arrhythmias and abnormal electrophysiological function of the heart muscle and the steady state of calcium-ion channels. We explored cardiomyocytes treated with heroin and the effect on calcium-ion channels. Transcriptomics and metabolomics were used to screen for differential genes and metabolite alterations after heroin administration to jointly analyze the effect of heroin on calcium channels in cardiomyocytes. Cardiomyocytes from primary neonatal rats were cultured in vitro and were treated with different concentrations of heroin to observe the changes in morphology and spontaneous beat frequency and rhythm by a patch clamp technique. Transcriptomic studies selected a total of 1,432 differentially expressed genes, 941 upregulated and 491 downregulated genes in rat cardiomyocytes from the control and drug intervention groups. Gene Ontology functional enrichment showed that 1,432 differential genes selected by the two groups were mainly involved in the regulation of the multicellular organismal process, response to external stimulus, myofibril, inflammatory response, muscle system process, cardiac muscle contraction, etc. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that these genes were mainly concentrated in cardiac muscle contraction, osteoclast differentiation, adrenergic signaling in cardiomyocytes, dilated cardiomyopathy, hypertrophic cardiomyopathy, and other important pathways. Metabolomic testing further suggested that cardiomyocyte metabolism was severely affected after heroin intervention. After the treatment with heroin, the L-type calcium channel current I-V curve was up-shifted, the peak value was significantly lower than that of the control group, action potential duration 90 was significantly increased in the action potential, resting potential negative value was lowered, and action potential amplitude was significantly decreased in cardiomyocytes. In this study, heroin could cause morphological changes in primary cardiomyocytes of neonatal rats and electrophysiological function. Heroin can cause myocardial contraction and calcium channel abnormalities, damage the myocardium, and change the action potential and L-type calcium channel.
Collapse
Affiliation(s)
- Liping Su
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Li Liu
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Min Ji
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Xiayun Hu
- Department of Pathology, Shanghai Changhai Hospital, Shanghai, China
| | - Min Liang
- Discipline Inspection and Supervision Department, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Ziyang Lu
- Department of Pathology, Qilu Hospital, Jinan, Shandong Province, PR China
| | - Zhiguo Wang
- Xinjiang Hengzheng Judicial Expertise Center, Urumqi, China
| | - Yaling Guan
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Jinling Xiao
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Mengjie Zhuang
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Sensen Zhu
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Long Yang
- Department of Anesthesiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Hongwei Pu
- Department of Discipline Construction, First Affiliated Hospital, Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi830054, Xinjiang, PR China
| |
Collapse
|